	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code	BS-SKIT.Ph5b1.F03	Date: 04-08-2019
	Title:	Engineering Chemistry Lab	Page: 1 / 36

Table of Contents

18CHEL16 : ENGINEERING CHEMISTRY LAB. 2
A. LABORATORY INFORMATION. 2

1. Lab Overview 2
2. Lab Content 2
3. Lab Material. 4
Textbook of Engineering Chemistry with Lab Manual gth Edition (English, Paperback, Shashi Chawla) 4
Vogel's Textbook of Practical Organic Chemistry (5th Edition) 5th Edition byA.I. Vogel (Author), A.R. Tatchell (Author), B.S. Furnis (Author), A.J. Hannaford(Author), P.W.G. Smith (Author)4
4. Lab Prerequisites 4
5. General Instructions 4
6. Lab Specific Instructions 5
B. OBE PARAMETERS 5
7. Lab / Course Outcomes 5
8. Lab Applications 6
Application of potentiometry to characterize acid and basic sites in humic substances Testing 6
The Techniques to study complexation reactions at the mineral/water. 6
Interface No indicator is used; instead the potential is measured across the analyte, typically an electrolyte solution 6
9. Articulation Matrix 7
10. Curricular Gap and Content. 7
11. Content Beyond Syllabus. 8
C. COURSE ASSESSMENT 8
12. Course Coverage. 8
13. Continuous Internal Assessment (CIA). 9
D. EXPERIMENTS 9
Experiment 01 : Potentiometric estimation of FAS using standard K 2 Cr 2 O 7 solution 9
Application of potentiometry to characterize acid and basic sites in humid substances Testing 11
The Techniques to study complexation reactions at the mineral/water. 11
Interface No indicator is used; instead the potential is measured across the analyte, typically an electrolyte solution 11
Experiment 02 : Conductometric estimation of acid mixture 12
Experiment 03 : Determination of Viscosity co-efficient of the given Organic liquid. 14
Experiment 04 : Keywords and identifiers. 16
Experiment 05 : Determination of pKa of the given sample using pH meter. 18
Experiment 06 : Flame photometric estimation of sodium and potassium. 20
PART - B 23
Experiment 01 : Determination of Total hardness of Hard Water sample by using Standard 23
Na2EDTA solution 23
OBSERVATION AND CALCULATION: 25
Experiment 02 : DETERMINATION OF CALCIUM OXIDE IN CEMENT SOLUTION. 26
Experiment 03 : DETERMINATION OF PERCENTAGE OF COPPER IN BRASS 28
Experiment 04 : DETERMINATION OF PERCENTAGE OF IRON IN HAEMATITE ORE SOLUTION 30
Experiment 05 : DETERMINATION OF CHEMICAL OXYGEN DEMAND (COD) OF WATER 32
Experiment 06 : Estimation of percentage of available chlorine in the given sample of bleaching 35powder35

	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	BS-SKIT.Ph5b1.F03	Date: 04-08-2019
	Title:	Engineering Chemistry Lab	Page: 2 / 36

Copyright ©2017. cAAS. All rights reserved.

Note : Remove "Table of Content" before including in CP Book

18CHEL16: ENGINEERING CHEMISTRY LAB

A. LABORATORY INFORMATION

1. Lab Overview

Degree:	B.E	Program:	BS
Year / Semester:	$2019 / 1$	Academic Year:	2019-20
Course Title:	Engineering Chemistry Lab	Course Code:	18CHEL16
Credit / L-T-P:	$1 /$ O-0-2	SEE Duration:	180 Minutes
Total Contact Hours:	42 Hrs	SEE Marks:	60 Marks
CIA Marks:	40	Test	2
Course Plan Author:	Dr. Manju M	Sign	Dt : 04-01-2019
Checked By:	Dr. Shankara B.S	Sign	Dt :14-08-2019

2. Lab Content

Unit	Title of the Experiments	Lab Hours	Concept	Blooms Level
	PART- A			
1	Potentiometric estimation of FAS using standard K 2 Cr 2 O 7 solution.	2	Redox Reaction s	-4 Analyzing \& L5 Evaluation
2	Conductometric estimation of acid mixture.	2	Acid Base Reaction	L4 Analyzing $\&$ L5 Evaluation
3	Determination of Viscosity co-efficient of the given liquid using Ostwald's viscometer.	2	Cohesive Force	-4 Analyzing \& L5 Evaluation
4	Colorimetric estimation of Copper.	2	Measurem ent of Optical Density	L4 Analyzing \& L5 Evaluation
5	Determination of pKa of the given weak acid using pH meter.	2	PH measure ment	L4 Analyzing $\&$ L5 Evaluation
6	Flame photometric estimation of sodium and potassium.	2	Atomizati on	L4 Analyzing $\&$ L5 Evaluation
	PART- B			
1	Estimation of Total hardness of water by EDTA method.	2	Complexo metric titration	L4

BSH

		SKIT	Teaching Process		Rev No.: 1.0	
		Doc Code	BS-SKIT.Ph5b1.F03		Date: 04-08-2019	
		Title:	Engineering Chemistry Lab		Page: 3 / 36	
Copyright ©2017. CAAS. All rights reserved.						
						L5 Evaluation
2	Esti	ion of Ca	cement solution by rapid EDTA method.	2	Complexo metric titration	L4 Analyzing \& L5 Evaluation
3	Dete sodi	mination of thiosulph	ercentage of Copper in brass using standard e solution.	2	lodometri c titration	L4 Analyzing \& L5 Evaluation
4	Dete	ination of	D of waste water.	2	Redox titration	L4 Analyzing \& L5 Evaluation
5	Estim Cr 2 indi	ation of Iron 7 solution or method	in haematite ore solution using standard K 2 external	2	Redox titration	L4 Analyzing $\&$ L5 Evaluatio
6	Estim sam	tion of per of bleach	centage of available chlorine in the given g powder	2	lodometri c titration	L4 Analyzing \& L5 Evaluation

3. Lab Material

Unit	Details	Available
1	Text books	
i	Textbook of Engineering Chemistry with Lab Manual 9th Edition (English, Paperback, Shashi Chawla)	In Lib
ii	Vogel's Textbook of Practical Organic Chemistry (5th Edition) 5th Edition by A.I. Vogel (Author), A.R. Tatchell (Author), B.S. Furnis (Author), A.J. Hannaford (Author), P.W.G. Smith (Author)	In Lib
2	Reference books	
i	G.H.Jeffery, J.Bassett, J.Mendham, R.C.Denney, "Vogel's Tex book of quantitative Chemical Analysis Fifth Edition(New),	In Lib
ii	O.P.Vermani \& Narula, "Theory and Practice in Applied Chemistry", New Age International Publisers.	In Lib
iii	Gary D. Christian, "Analytical chemistry ", ${ }^{\text {th }}$ Edition, Wiley India.	In Lib
ii	Engineering Chemistry Lab manual	In dept
3	Others (Web, Video, Simulation, Notes etc.)	
i	https://sites.google.com/...chemistry-laboratory-w.	Available on web
ii	https://science.nrao.edu > Facilities > CDL	Available on web
iii	https://www.acs.org/.../chemistryclubs/.../simulati..	Available on web
iv	https://www.augusta.edu/.../chemistryandphysics/	Available on web
v	www.ncl-india.org/	Available on web

4. Lab Prerequisites:

-	-	Base Course:		-	-		
SNo	Course Code	Course Name	Topic / Description	Sem	Remarks		
1	18CHEL16	Engineering Chemistry Lab	Titrations/students have done these kind of experiments in lower standards.	1			
BSH Prepared by							Approved
:---							

	SKIT	Teaching Process		Rev No.: 1.0
	Doc Code:	BS-SKIT.Ph5b1.F03		Date: 04-08-2019
	Title:	Engineering Chemistry Lab		Page: 4 / 36
Copyright ©2017. cAAS. All rights reserved.				
		Instrumental analysis/students have studied in theory part regarding these experiments.	1	

Note: If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B. 5.
5. General Instructions

SNo	Instructions	Remarks
1	Never work in the laboratory unless a demonstrator or teaching assistant is present.	
2	Do not throw waste such as match stems filter papers etc. into the sink. They must be thrown into the waste jars.	
3	Keep the water and gas taps closed expect when these utilities are needed. 4	Never taste any chemical unless instructed to do so and don't allow chemicals to come in contact with your skin.
5	While working with gases, conduct the experiment in a fume hood.	
6	Keep all the doors and windows open while working in the laboratory.	
7	You should know about the hazards and properties of every chemical which you are going to use for the experiment. Many chemicals encountered in analysis are poisonous and must be carefully handled.	
8	Sulphuric acid must be diluted only when it is cold .This should be done by adding it slowly to cold water with stirring ,and not vice versa.	
9	Reagent bottles must never be allowed to accumulate on the work bench. They should be placed back in the shelves as and when used.	
10	Containers in which reaction to be performed a little later should be labeled. Working space should be cleaned immediately.	

6. Lab Specific Instructions

SNo	Specific Instructions	Remarks
	Chemical Splash Goggles:	
1	Purchase a pair of chemical safety goggles).	
2	Bring your goggles with you for all laboratory sessions of your chemistry class. You will not be allowed to work in the lab without your goggles	
3	Wear your goggles when anyone in the lab is conducting an experiment.	
	Laboratory Coats:	
4	Purchase a lab coat that fits you well. Lab coats that are too tight or too loose are not safe. Sleeves that are too long should be rolled up.	
5	If your lab coat has not been contaminated with a hazardous substance, you may wash it as you do your other clothing.	
6	If your lab coat becomes contaminated with a hazardous substance, as with any other lab spill, notify your instructor immediately.	
7	Contaminated lab coats will be handled by your instructor as they deem appropriate.	
8	Nitrile Gloves:	
Nitrile gloves are to be worn only during portions of experiments where specified by the experimental procedure, when instructed by the instructor or supervisor, or when working with substances for which the protocol requires the use of gloves.		
9	Note that nitrile gloves are flammable and will stick to your skin if they burn. Do not wear gloves while working with Bunsen burners.	
10	Do not wear gloves outside the lab. When a chemical comes in contact with a glove, remove the glove immediately and place it in the glove waste.	
11	Do not touch surfaces such as door knobs, computer keyboards, and chairs while wearing Pag gloves.	

B. OBE PARAMETERS

1. Lab / Course Outcomes

\#	COs	Teach. Hours	Concept	Instr Method	Assessment Method	Blooms' Level
PART- A						
1	Handling different types of instruments for quantitative analysis of samples.	21	Instrumental method of analysis	Demons trate	Test	L3
PART- B						
2	Volumetric analysis of various samples quantitatively.	21	Volumetric analysis	$\begin{array}{\|c\|} \hline \text { Demons } \\ \text { trate } \end{array}$	Test	L3
-	Total	42	-	-	-	-

Note: Identify a max of 2 Concepts per unit. Write 1 CO per concept.

2. Lab Applications

SNo	Application Area	CO	Level
PART- A			
1	Potentiometric estimation of FAS using standard K 2 Cr 2 O 7 solution.	CO1	$\begin{gathered} \text { L3 } \\ \& \\ \text { L4 } \end{gathered}$
2	Conductometric estimation of acid mixture.	CO1	$\begin{gathered} \mathrm{L} 3 \\ \& \\ \mathrm{~L} 4 \end{gathered}$
3	Determination of percentage of Copper in brass using standard sodium thiosulphate solution.	CO 2	$\begin{gathered} \mathrm{L} 3 \\ \& \\ \mathrm{~L} 4 \end{gathered}$
4	Determination of COD of waste water.	CO 2	$\begin{gathered} \text { L3 } \\ \& \\ \text { L4 } \end{gathered}$

Note: Write 1 or 2 applications per CO.
3. Mapping And Justification
4. Articulation Matrix
(CO - PO MAPPING)

-	Course Outcomes	Program Outcomes												
\#	COs	PO1	PO2	PO_{3}	PO_{4}	PO5	PO6	PO7	PO8	POg	PO10	PO11	PO12	Level
18CHE271.	Estimate amount of FAS potentio metrically through redox titrations.	${ }^{x}$	x	\times										
18CHE27.2	Calculate amount of acid mixture conducto metrically through neutralization titration.	x	x	x										
18CHE27.3	Compute amount of copper bu measuring absorbence using optical method	\times	x	x										
18CHE27.4	Determine Pka Value of given sample using Ph meter.	x	x	x										
18CHE27.5	Estimation of co-efficient of viscosity of given organic liquid using ostwald's method.	x	x	x										

BSH

5. Curricular Gap and Content

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					

Note: Write Gap topics from A. 4 and add others also.

6. Content Beyond Syllabus

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					

Note: Anything not covered above is included here.

C. COURSE ASSESSMENT

1. Course Coverage

Unit Title	Teachi	No. of question in Exam	CO	Levels

		SKIT	Teaching Process								Rev No.: 1.0		
		Doc Cod	BS-SKIT.Ph5b1.F03								Date: 04-08-2019		
		Title:	Engineering Chemistry Lab								Page: 7/36		
Copyright ©2017. CAAS. All rights reserved.													
				$\begin{gathered} \text { ng } \\ \text { Hours } \end{gathered}$	CIA-1	CIA-2	CIA-3	Asg-1	Asg-2	Asg-3	SEE		
PART- A													
1	Poten using solut	metric standard	mation of FAS $2 \mathrm{Cr} 2 \mathrm{O} 7$	02	1	-	-	-	-	-	1	CO1	$\begin{gathered} \text { L3 } \\ \& \\ \text { L4 } \end{gathered}$
2	Cond mixtu	ometric	mation of acid	02	1	-	-	-	-	-	1	CO1	$\begin{gathered} \mathrm{L} 3 \\ \& \\ \mathrm{~L} 4 \end{gathered}$
3	Deter efficie Ostw	ination of the d's viscom	Viscosity coliquid using r.	02	1	-	-	-	-	-	1	CO1	$\begin{gathered} \text { L3 } \\ \& \\ \mathrm{~L} 4 \end{gathered}$
4	Colori	etric estim	on of Copper.	02	1	-	-	-	-	-	1	CO1	$\begin{gathered} \mathrm{L} 3 \\ \& \\ \mathrm{~L} \end{gathered}$
5	Dete weak	nation of d using	of the given meter.	02	1	-	-	-	-	-	1	CO1	$\begin{gathered} \mathrm{L} 3 \\ \& \\ \mathrm{~L} 4 \end{gathered}$
6	Flame sodiu	photometric and potas	estimation of m.	02	1	-	-	-	-	-	1	CO1	$\begin{gathered} \mathrm{L} 3 \\ \& \\ \mathrm{~L} 4 \end{gathered}$
PART- B													
1	Estim water	n of To EDTA m	hardness of d.	02	-	1	-	-	-	-	1	CO 2	$\begin{gathered} \mathrm{L} 3 \\ \& \\ \mathrm{~L} 4 \end{gathered}$
2	Estim solutior	ion of by rapid	in cement TA method.	02	-	1	-	-	-	-	1	CO 2	$\begin{gathered} \mathrm{L} 3 \\ \& \\ \mathrm{~L} 4 \end{gathered}$
3	Deter Copp sodium	ination of in brass thiosulph	percentage of using standard solution.	02	-	1	-	-	-	-	1	CO 2	$\begin{gathered} \text { L3 } \\ \& \\ \text { L4 } \end{gathered}$
4	Deter water	ination	COD of waste	02	-	1	-	-	-	-	1	CO 2	$\begin{gathered} \mathrm{L} 3 \\ \& \\ \mathrm{~L} 4 \end{gathered}$
5	Estim solution 7 solu indicat	ion of Iron using sta on by exter r method	haematite ore dard K 2 Cr 2 O al	02	-	1	-	-	-	-	1	CO 2	$\begin{gathered} \text { L3 } \\ \& \\ \text { L4 } \end{gathered}$
6	Estim availa samp	on of e chlorin of bleach	ercentage of in the given powder	02	-	1	-	-	-	-	1	CO 2	$\begin{gathered} \text { L3 } \\ \& \\ \text { L4 } \end{gathered}$
-				42	7	8	5	5	5	5	20	-	-

Note: Write CO based on the theory course.

2. Continuous Internal Assessment (CIA)

Evaluation	Weightage in Marks	CO	Levels
CIA Exam - 1	10	CO1,	$\begin{gathered} \text { L3 } \\ \& \\ \text { L4 } \end{gathered}$
CIA Exam - 2	10	CO2,	$\begin{gathered} \mathrm{L} 3 \\ \& \\ \mathrm{~L} 4 \end{gathered}$
CIA Exam - 3	10	CO 1 \& CO 2,	$\begin{gathered} \text { L3 } \\ \& \\ \text { L4 } \end{gathered}$
Other Activities - define Slip test			L2, L3, L4...

PART - A

D. EXPERIMENTS

Experiment 01 : Potentiometric estimation of FAS using standard K 2 Cr 2 O 7 solution.

Experiment 02 : Conductometric estimation of acid mixture

-	Experiment No.:	2	Marks	Date Planned	Date Conducted
1	Title	Conductometric estimation of acid mixture.			
2	Course Outcomes	Calculate amount of acid mixture conductometrically through neutralization reaction			
3	Aim	Conductometric estimation of acid mixture by using standard $\mathrm{NaOH}(1 \mathrm{~N})$.			
4	Material Equipment Required	> Digital Conductometer > Conductivity cell > 10ml Burette > 100ml beaker > Acid mixture $>1 \mathrm{~N} \mathrm{NaOH}$ Solution			
5	Principle	In conductometric titrations, there is a sudden change in conductance of the solution near the neutralization point. However, the change is not sharp and hence the neutralization point is determined graphically by plotting conductivity against titre values. The principle underlying conductometric titrations is the replacement of ions of a particular conductivity by ions of different conductivity during titration. When a mixture of HCl and $\mathrm{CH}_{3} \mathrm{COOH}$ is titrated against sodium hydroxide the strong acid, HCl will be neutralized first. The neutralization of the weak acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ commences only after the complete neutralization of the strong acid. $\begin{array}{ll} \mathrm{NaOH}+\mathrm{HCl} \\ \mathrm{NaOH}+\mathrm{CH}_{3} \mathrm{COOH} & \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \\ \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O} \end{array}$ The addition of sodium hydroxide to hydrochloric acid decreases the conductance of the latter because highly mobile H^{+}ions are replaced by the less mobile Na^{+}ion. This trend continues till all the H^{+}ions of HCl are neutralized. On continuing the addition of NaOH , conductance increases slowly due the neutralization of acetic acid. Further addition of NaOH raises the conductance steeply due to the presence of free OH^{-}ions. A typical titration curve is shown in the model graph.			

BSH

Experiment 03 : Determination of Viscosity co-efficient of the given Organic liquid

BSH

BSH

Experiment 04 : Keywords and identifiers

-	Experiment No.:	4	Marks	Date Planned	Date Conducted
1	Title	Colorimetric estimation of Copper.			
2	Course Outcomes	Compute the amount of Cu by measuring absorbance using optica			
3	Aim	Colorimetric estimation of Copper by a givenCuSO4 solution			
4	Material Equipment Required	$>$ Photo colorimeter > Cuvate tube > 50 ml volumetric flask > Copper sulphate solutions $>\mathrm{NH}_{3}$ solutions			
5	Theory, Formula Principle, Concept	When a monochromatic light of intensity \mathbf{I}_{0} is incident on a colored solution, a part $\left(I_{a}\right)$ of it is absorbed, a part $\left(I_{r}\right)$ is reflected and the remaining part $\left(I_{t}\right)$ is transmitted. Thus, $I_{o}=I_{a}+I_{r}+I_{t}$ Absorbance is given as $\mathrm{A}=\log \frac{I_{o}}{I_{t}}$ According to Beer- Lambert's Law, A = ЄC l Where, $\epsilon=$ molar extinction coefficient, a constant for any particular colored substance for a given wave length of light, $\mathrm{C}=$ Molar concentration of the solution and l = path length. When the path length is kept constant, then A α c. Hence a plot of absorbance, A, against concentration, c, gives a straight line. Chemical analysis through measurements of absorption of light of a particular wavelength is known as colorimetry. The absorbance of light of a particular wavelength by a substance in solution varies directly with its concentration and the thickness of the solution. When the thickness of the medium is kept constant, the absorbance directly depends upon the concentration. A series of solutions with different concentrations of cuprammonium ions is prepared and absorbance of each is measured at $\mathbf{6 2 0} \mathbf{n m}$ radiation. A			

Experiment 05 : Determination of pKa of the given sample using pH meter.

BSH

Experiment 06 : Flame photometric estimation of sodium and potassium.

BSH

	(4) SKIT	Teaching Process				Rev No.: 1.0	
	(BS-SKIT.Ph5b1.F03				Date: 04-08-2019	
	(2) Title:	Engineering Chemistry Lab				Page: 20 / 36	
copyright O2017. cAAS. All rights reserved.							
		calibration curve by plotting the reading (y-axis) and volume of NaCl solution (x axis). From the calibration curve, find out the volume of the given test solution and from which calculate the amount of $\mathrm{Na}(58.5 \mathrm{~g}$ of NaCl contains 23 g of Na). Determination of Potassium: Prepare standard solution of potassium and follow the same procedure given above for sodium. 1. Let the instrument warm up for 5-10 minutes. 2. Feed distilled water to the instrument. 3. Select the element Na by turning the selector "Elementwahl". 4. Turn the outer knob "Messbereich" into position "10 o". Pull the "Kompensaton I" knob slightly out and adjust readout to 0. Press the "Kompensation I" knob back. Readjust o reading with "Kompensation II" if necessary. 5. Aspirate the most concentrated standard solution (solution number 6) and adjust readout to approximately 350 (on uppermost scale) using inner "Messbereich" knob. 6. Aspirate distilled water - the instrument should read 0. 7. Aspirate standard solutions no. 1, 2, 3, test solution, and then standards 4,5,6. Record the results. 8. Repeat 3-7 for solutions of potassium. 9. Aspirate distilled water for at least 5 minutes to clean the system.					
7	Model Diagram						plifier nd adout
8	Observation Look-up Output Table, Table,						
		Volume of sodium chloride solution (cm ${ }^{3}$)	Concentrati on of $\mathrm{Na}=$ $500 \times \mathrm{vol}$ 50 (ppm)	Emission Intensity	Volume of potassium chloride solution $\left(\mathrm{cm}^{3}\right)$	Concentr ation of K $=500 x$ vol 50 (ppm)	Emission Intensity

BSH

PART - B

Experiment 01 : Determination of Total hardness of Hard Water sample by using Standard Na2EDTA solution.

BSH

Experiment 02 : DETERMINATION OF CALCIUM OXIDE IN CEMENT SOLUTION.

BSH

BSH

Experiment 03 : DETERMINATION OF PERCENTAGE OF COPPER IN BRASS

	4 SKIT	Teaching Process				Rev No.: 1.0
		BS-SKIT.Ph5b1.F03				Date: 04-08-2019
	(2) Title:	Engineering Chemistry Lab				Page: 27 / 36
Copyright ©2017. cAAS. All rights reserved.						
				Planned	Con	ted
1	Title	DETERMINATION OF PERCENTAGE OF COPPER IN BRASS				
2	Course Outcomes	Estimation of percentage of Copper in a given alloy by iodometric method.				
3	Aim	DETERMINATION OF PERCENTAGE OF COPPER IN BRASS BY USING STANDARD $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution.				
4						
5	Principle	The chief constituents of brass alloy are copper and zinc. It also contains small quantities s tin, lead and iron. The percentage composition of typical brass is copper 50-90, zinc: 20-40, Tin; 0.6, Lead; 0.2, Iron; 0.1 A solution of brass is made by dissolution of the sample in nitric acid. Boiling with urea destroys oxides of nitrogen. Adding ammonia neutralizes excess acid. The solution is changed to weak acidic medium by adding acetic acid. Potassium iodide is added. lodine is liberated by the cupric ions. Then the solution is tittered against sodium thiosulphate solution using starch as indicator. The amount of sodium thiosulphate consumed is the measure of the amount of copper present				
6	Procedure	PART A: Preparation of Brass solution: Weigh exactly the given sample of brass into a clean $250 \mathrm{~cm}^{3}$ conical flask. Add $3 \mathrm{~cm}^{3}$ of $1: 1$ nitric acid and boil. Add 2 test tube of Dm water and about 1 g of urea. Boil for about 2 minutes destroy oxides nitrogen. Cool the mixture. PART -B: estimation of copper in brass solution. Add 1 test tube of Demineralised water to the solution obtained in part A. Add Ammonium hydroxide drop by drop until a pale blue precipitate is obtained. Dissolve the precipitate by adding 5 cm 3 of acetic acid and $10 \mathrm{~cm}^{3}$ of $20 \% \mathrm{Kl}$ solution.Titrate the librated iodine against standard sodium thiosulphate solution taken in the burette until the solution becomes PALE YELLOW. Add about $2 \mathrm{~cm}^{3}$ of freshly prepared starch solution as indicator. Continue the titration by adding sodium thiosulphate solutionStrictly drop by drop until the dark blue coloration disappears, leaving behind white ppt. Repeat PART A and Part B to conduct a duplicate. Calculate the percentage of copper present in brass sample.				
7	Reaction Equation	$\begin{aligned} & 2 \mathrm{Cu}^{2+}+4 \mathrm{KI}-\cdots-\cdots \mathrm{Cu}_{2} \mathrm{I}_{2}+4 \mathrm{~K}^{+}+\mathrm{I}_{2} \\ & 2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{I}_{2}-\cdots-\cdots---1+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6} \\ & \hline \end{aligned}$				
8	Observation Table, Look-up Table, Output	Burette readings	Sample-1	Sample-II	Sample-III	Indicator and colour change

Experiment 04 : DETERMINATION OF PERCENTAGE OF IRON IN HAEMATITE ORE SOLUTION

| - | Experiment No.: | 4 | Marks | Date
 Planned | Date
 Conducted |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Title | DETERMINATION OF PERCENTAGE OF IRON IN HAEMATITE ORE | | | |

BSH

BSH

	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	BS-SKIT.Ph5b1.F03	Date: 04-08-2019
	Title:	Engineering Chemistry Lab	Page: $31 / 36$

Copyright ©2017. cAAS. All rights reserved.

Experiment 05 : DETERMINATION OF CHEMICAL OXYGEN DEMAND (COD) OF WATER

BSH

Experiment 06 : Estimation of percentage of available chlorine in the given sample of bleaching powder

BSH

BSH

	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code	BS-SKIT.Ph5b1.F03	Date: 04-08-2019
	Title:	Engineering Chemistry Lab	Page: 36 / 36

