| States of the second | SKIT                      |
|----------------------|---------------------------|
|                      | Doc Code:                 |
| ALTER ALTER S        | Title:                    |
| Copyright ©2017. cA  | AAS. All rights reserved. |

# Table of Contents

| 18CHEL16 : ENGINEERING CHEMISTRY LAB                                                     |
|------------------------------------------------------------------------------------------|
| A. LABORATORY INFORMATION                                                                |
| 1. Lab Overview                                                                          |
| 3. Lab Material                                                                          |
| Textbook of Engineering Chemistry with Lab Manual 9th Edition (English,                  |
| Paperback, Shashi Chawla)                                                                |
| Vogel's Textbook of Practical Organic Chemistry (5th Edition) 5th Edition by             |
| A.I. Vogel (Author), A.R. Tatchell (Author), B.S. Furnis (Author), A.J. Hannaford        |
| (Author), P.W.G. Smith (Author)                                                          |
| 4. Lab Prerequisites:                                                                    |
| 5. General Instructions                                                                  |
| 6. Lab Specific Instructions                                                             |
| 1. Lab / Course Outcomes                                                                 |
| 2. Lab Applications                                                                      |
| Application of potentiometry to characterize acid and basic sites in humic               |
| substances Testing                                                                       |
| The Techniques to study complexation reactions at the mineral/water6                     |
| Interface No indicator is used; instead the potential is measured across the             |
| analyte, typically an electrolyte solution                                               |
| 3. Articulation Matrix                                                                   |
| 5. Curricular Gap and Content                                                            |
| 6. Content Beyond Syllabus                                                               |
| 1. Course Coverage                                                                       |
| 2. Continuous Internal Assessment (CIA)                                                  |
| D. EXPERIMENTS                                                                           |
| Application of potentiometry to characterize acid and basic sites in humid               |
|                                                                                          |
| substances Testing                                                                       |
|                                                                                          |
| Interface No indicator is used; instead the potential is measured across the             |
| analyte, typically an electrolyte solution                                               |
| Experiment 02 : Conductometric estimation of acid mixture                                |
| Experiment 04 : Keywords and identifiers16                                               |
| Experiment 05 : Determination of pKa of the given sample using pH meter                  |
| Experiment 06 : Flame photometric estimation of sodium and potassium                     |
| Experiment 01 : Determination of Total hardness of Hard Water sample by using Standard23 |
| Na2EDTA solution                                                                         |
| OBSERVATION AND CALCULATION:                                                             |
| Experiment 03 : DETERMINATION OF PERCENTAGE OF COPPER IN BRASS                           |
| Experiment 04 : DETERMINATION OF PERCENTAGE OF IRON IN HAEMATITE ORE SOLUTION30          |
| Experiment 05 : DETERMINATION OF CHEMICAL OXYGEN DEMAND (COD) OF WATER                   |
| powder                                                                                   |
|                                                                                          |

|                                             | SKIT      | Teaching Process          | Rev No.: 1.0     |  |  |
|---------------------------------------------|-----------|---------------------------|------------------|--|--|
|                                             | Doc Code: | BS-SKIT.Ph5b1.F03         | Date: 04-08-2019 |  |  |
| ALTERAL COR                                 | Title:    | Engineering Chemistry Lab | Page: 2 / 36     |  |  |
| Copyright ©2017. CAAS. All rights reserved. |           |                           |                  |  |  |

Note : Remove "Table of Content" before including in CP Book

# 18CHEL16 : ENGINEERING CHEMISTRY LAB

# A. LABORATORY INFORMATION

#### 1. Lab Overview

| Degree:              | B.E                       | Program:       | BS              |
|----------------------|---------------------------|----------------|-----------------|
| Year / Semester :    | 2019/1                    | Academic Year: | 2019-20         |
| Course Title:        | Engineering Chemistry Lab | Course Code:   | 18CHEL16        |
| Credit / L-T-P:      | 1/0-0-2                   | SEE Duration:  | 180 Minutes     |
| Total Contact Hours: | 42 Hrs                    | SEE Marks:     | 60 Marks        |
| CIA Marks:           | 40                        | Test           | 2               |
| Course Plan Author:  | Dr. Manju M               | Sign           | Dt : 04-01-2019 |
| Checked By:          | Dr. Shankara B.S          | Sign           | Dt : 14-08-2019 |

#### 2. Lab Content

| Unit | Title of the Experiments                                                                   | Lab<br>Hours | Concept                                  | Blooms Level                             |
|------|--------------------------------------------------------------------------------------------|--------------|------------------------------------------|------------------------------------------|
|      | PART- A                                                                                    |              |                                          |                                          |
| 1    | Potentiometric estimation of FAS using standard K 2 Cr 2 O 7<br>solution.                  |              | Redox<br>Reaction<br>s                   | L4<br>Analyzing<br>&<br>L5<br>Evaluation |
| 2    | Conductometric estimation of acid mixture.                                                 |              | Acid Base<br>Reaction                    | L4<br>Analyzing<br>&<br>L5<br>Evaluation |
| 3    | Determination of Viscosity co-efficient of the given liquid using<br>Ostwald's viscometer. |              | Cohesive<br>Force                        | L4<br>Analyzing<br>&<br>L5<br>Evaluation |
| 4    | Colorimetric estimation of Copper.                                                         | 2            | Measurem<br>ent of<br>Optical<br>Density | L4<br>Analyzing<br>&<br>L5<br>Evaluation |
| 5    | Determination of pKa of the given weak acid using pH meter.                                | 2            | PH<br>measure<br>ment                    | L4<br>Analyzing<br>&<br>L5<br>Evaluation |
| 6    | Flame photometric estimation of sodium and potassium.                                      | 2            | Atomizati<br>on                          | L4<br>Analyzing<br>&<br>L5<br>Evaluation |
|      | PART- B                                                                                    |              |                                          |                                          |
| 1    | Estimation of Total hardness of water by EDTA method.                                      |              | Complexo<br>metric<br>titration          | L4<br>Analyzing<br>&                     |

| Alwanton S |  |
|------------|--|

| A REAL PROPERTY OF  | SKIT                    | Teaching Process          | Rev No.: 1.0     |
|---------------------|-------------------------|---------------------------|------------------|
|                     | Doc Code:               | BS-SKIT.Ph5b1.F03         | Date: 04-08-2019 |
| Company of the      | Title:                  | Engineering Chemistry Lab | Page: 3 / 36     |
| Copyright ©2017. cA | AS. All rights reserved |                           |                  |

| copyright | ©2017. CAAS. All rights reserved.                                                                                     |   |                                 |                                          |
|-----------|-----------------------------------------------------------------------------------------------------------------------|---|---------------------------------|------------------------------------------|
|           |                                                                                                                       |   |                                 | L5<br>Evaluation                         |
| 2         | Estimation of CaO in cement solution by rapid EDTA method.                                                            | 2 | Complexo<br>metric<br>titration | L4<br>Analyzing<br>&<br>L5<br>Evaluation |
| 3         | Determination of percentage of Copper in brass using standard sodium thiosulphate solution.                           | 2 | lodometri<br>c titration        | L4<br>Analyzing<br>&<br>L5<br>Evaluation |
| 4         | Determination of COD of waste water.                                                                                  | 2 | Redox<br>titration              | L4<br>Analyzing<br>&<br>L5<br>Evaluation |
| 5         | Estimation of Iron in haematite ore solution using standard K 2<br>Cr 2 O 7 solution by external<br>indicator method. | 2 | Redox<br>titration              | L4<br>Analyzing<br>&<br>L5<br>Evaluatio  |
| 6         | Estimation of percentage of available chlorine in the given sample of bleaching powder                                | 2 | lodometri<br>c titration        | L4<br>Analyzing<br>&<br>L5<br>Evaluation |

# 3. Lab Material

| Unit | Details                                                                                                                                                                                                                                        | Available        |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1    | Text books                                                                                                                                                                                                                                     |                  |
| i    | Textbook of Engineering Chemistry with Lab Manual 9th Edition (English,<br>Paperback, Shashi Chawla)                                                                                                                                           | In Lib           |
| ii   | Vogel's Textbook of Practical Organic Chemistry (5th Edition) 5th Edition by <u>A.I.</u><br><u>Vogel</u> (Author), <u>A.R. Tatchell</u> (Author), <u>B.S. Furnis</u> (Author), <u>A.J. Hannaford</u><br>(Author), <u>P.W.G. Smith</u> (Author) | In Lib           |
| 2    | Reference books                                                                                                                                                                                                                                |                  |
| i    | G.H.Jeffery, J.Bassett, J.Mendham, R.C.Denney, "Vogel's Tex book of<br>quantitative Chemical Analysis Fifth Edition(New) ,                                                                                                                     | In Lib           |
| ii   | O.P.Vermani & Narula, "Theory and Practice in Applied Chemistry", New Age<br>International Publisers.                                                                                                                                          | In Lib           |
| iii  | Gary D. Christian, "Analytical chemistry ", 6 <sup>th</sup> Edition, Wiley India.                                                                                                                                                              | In Lib           |
| ii   | Engineering Chemistry Lab manual                                                                                                                                                                                                               | In dept          |
| 3    | Others (Web, Video, Simulation, Notes etc.)                                                                                                                                                                                                    |                  |
| i    | https://sites.google.com/chemistry-laboratory-w.                                                                                                                                                                                               | Available on web |
| ii   | https://science.nrao.edu > Facilities > CDL                                                                                                                                                                                                    | Available on web |
| iii  | https://www.acs.org//chemistryclubs//simulati                                                                                                                                                                                                  | Available on web |
| iv   | https://www.augusta.edu//chemistryandphysics/                                                                                                                                                                                                  | Available on web |
| V    | www.ncl-india.org/                                                                                                                                                                                                                             | Available on web |

# 4. Lab Prerequisites:

| -   | -      | Base Course:  |                                          | -   | -       |
|-----|--------|---------------|------------------------------------------|-----|---------|
| SNo | Course | Course Name   | Topic / Description                      | Sem | Remarks |
|     | Code   |               |                                          |     |         |
| 1   |        |               | Titrations/students have done these kind | 1   |         |
|     |        | Chemistry Lab | of experiments in lower standards.       |     |         |

| SKIT Teaching Process |                         |                                        | Rev No.: 1.0 |                  |
|-----------------------|-------------------------|----------------------------------------|--------------|------------------|
|                       |                         |                                        |              | Date: 04-08-2019 |
| A REAL OF             | Title:                  | Engineering Chemistry Lab              |              | Page: 4 / 36     |
| Copyright ©2017. c/   | AS. All rights reserved |                                        |              | ·                |
|                       |                         | Instrumental analysis/students have    | 1            |                  |
|                       |                         | studied in theory part regarding these |              |                  |

experiments. Note: If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

### 5. General Instructions

| SNo | Instructions                                                                   | Remarks |
|-----|--------------------------------------------------------------------------------|---------|
| 1   | Never work in the laboratory unless a demonstrator or teaching assistant is    |         |
|     | present.                                                                       |         |
| 2   | Do not throw waste such as match stems filter papers etc. into the sink. They  |         |
|     | must be thrown into the waste jars.                                            |         |
| 3   | Keep the water and gas taps closed expect when these utilities are needed.     |         |
| 4   | Never taste any chemical unless instructed to do so and don't allow            |         |
|     | chemicals to come in contact with your skin.                                   |         |
| 5   | While working with gases, conduct the experiment in a fume hood.               |         |
| 6   | Keep all the doors and windows open while working in the laboratory.           |         |
|     | You should know about the hazards and properties of every chemical which       |         |
|     | you are going to use for the experiment. Many chemicals encountered in         |         |
|     | analysis are poisonous and must be carefully handled.                          |         |
|     | Sulphuric acid must be diluted only when it is cold .This should be done by    |         |
|     | adding it slowly to cold water with stirring ,and not vice versa.              |         |
|     | Reagent bottles must never be allowed to accumulate on the work bench.         |         |
| -   | They should be placed back in the shelves as and when used.                    |         |
| 10  | Containers in which reaction to be performed a little later should be labeled. |         |
|     | Working                                                                        |         |
|     | space should be cleaned immediately.                                           |         |

# 6. Lab Specific Instructions

| SNo | Specific Instructions                                                                                                                                                                                                                                         | Remarks |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|     | Chemical Splash Goggles:                                                                                                                                                                                                                                      |         |
| 1   | Purchase a pair of chemical safety goggles).                                                                                                                                                                                                                  |         |
| 2   | Bring your goggles with you for all laboratory sessions of your chemistry class. You will not be allowed to work in the lab without your goggles                                                                                                              |         |
| 3   | Wear your goggles when anyone in the lab is conducting an experiment.                                                                                                                                                                                         |         |
|     | Laboratory Coats:                                                                                                                                                                                                                                             |         |
| 4   | Purchase a lab coat that fits you well. Lab coats that are too tight or too loose are not safe. Sleeves that are too long should be rolled up.                                                                                                                |         |
| 5   | If your lab coat has not been contaminated with a hazardous substance, you may wash it as you do your other clothing.                                                                                                                                         |         |
| 6   | If your lab coat becomes contaminated with a hazardous substance, as with any other lab spill, notify your instructor immediately.                                                                                                                            |         |
| 7   | Contaminated lab coats will be handled by your instructor as they deem appropriate.                                                                                                                                                                           |         |
|     | Nitrile Gloves:                                                                                                                                                                                                                                               |         |
| 8   | Nitrile gloves are to be worn only during portions of experiments where<br>specified by the experimental procedure, when instructed by the instructor<br>or supervisor, or when working with substances for which the protocol<br>requires the use of gloves. |         |
| 9   | Note that nitrile gloves are flammable and will stick to your skin if they burn.<br>Do not wear gloves while working with Bunsen burners.                                                                                                                     |         |
| 10  | Do not wear gloves outside the lab. When a chemical comes in contact with a glove, remove the glove immediately and place it in the glove waste.                                                                                                              |         |
| 11  | Do not touch surfaces such as door knobs, computer keyboards, and chairs while wearing Pag gloves.                                                                                                                                                            |         |

| 1 and                       | AND | SKIT                    | Teaching Process          | Rev No.: 1.0     |
|-----------------------------|-----------------------------------------|-------------------------|---------------------------|------------------|
| Doc Code: BS-SKIT.Ph5b1.F03 |                                         | Doc Code:               | BS-SKIT.Ph5b1.F03         | Date: 04-08-2019 |
| Contraction of the second   | Title: Engineering Chemistry Lab        |                         | Engineering Chemistry Lab | Page: 5 / 36     |
| Copyright                   | ©2017. cA                               | AS. All rights reserved |                           |                  |
| 12                          | Gloves                                  |                         |                           |                  |
|                             | proper                                  |                         |                           |                  |
|                             | <u> </u>                                | <u> </u>                |                           |                  |

13 Dispose of gloves at the end of each experiment in the glove waste containers provided in each lab.

# **B. OBE PARAMETERS**

#### 1. Lab / Course Outcomes

| # | COs                                                                           | Teach. | Concept                               | Instr           | Assessment | Blooms' |
|---|-------------------------------------------------------------------------------|--------|---------------------------------------|-----------------|------------|---------|
|   |                                                                               | Hours  |                                       | Method          | Method     | Level   |
|   | PAR                                                                           | Г- А   |                                       |                 |            |         |
|   | Handling different types of instruments for quantitative analysis of samples. | 21     | Instrumental<br>method of<br>analysis | Demons<br>trate | Test       | L3      |
|   | PAR                                                                           | Г- В   |                                       |                 |            |         |
|   | Volumetric analysis of various samples<br>quantitatively.                     | 21     | Volumetric<br>analysis                | Demons<br>trate | Test       | L3      |
| - | Total                                                                         | 42     | -                                     | -               | -          | -       |

Note: Identify a max of 2 Concepts per unit. Write 1 CO per concept.

#### 2. Lab Applications

| SNo     | Application Area                                                                            | CO  | Level         |  |  |  |
|---------|---------------------------------------------------------------------------------------------|-----|---------------|--|--|--|
| PART- A |                                                                                             |     |               |  |  |  |
| 1       | 1 Potentiometric estimation of FAS using standard K 2 Cr 2 O 7 solution.                    |     |               |  |  |  |
| 2       | Conductometric estimation of acid mixture.                                                  | CO1 | L3<br>&<br>L4 |  |  |  |
|         | Determination of percentage of Copper in brass using standard sodium thiosulphate solution. | CO2 | L3<br>&<br>L4 |  |  |  |
| 4       | Determination of COD of waste water.                                                        | CO2 | L3<br>&<br>L4 |  |  |  |

Note: Write 1 or 2 applications per CO.

#### 3. Mapping And Justification

#### 4. Articulation Matrix

#### (CO - PO MAPPING)

| - | Course Outcomes                                                                               | Program Outcomes |     |     |     |     |     |     |     |     |      |      |      |       |
|---|-----------------------------------------------------------------------------------------------|------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|-------|
| # | COs                                                                                           | PO1              | PO2 | PO3 | PO4 | PO5 | P06 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | Level |
|   | Estimate amount of FAS potentic<br>metrically through redox<br>titrations.                    |                  | ×   | ×   |     |     |     |     |     |     |      |      |      |       |
| _ | Calculate amount of acid mixture<br>conducto metrically through<br>neutralization titration.  | 1                | ×   | ×   |     |     |     |     |     |     |      |      |      |       |
|   | Compute amount of copper bu<br>measuring absorbence using<br>optical method                   |                  | ×   | X   |     |     |     |     |     |     |      |      |      |       |
|   | Determine Pka Value of giver<br>sample using Ph meter.                                        | X                | x   | x   |     |     |     |     |     |     |      |      |      |       |
|   | Estimation of co-efficient of<br>viscosity of given organic liquic<br>using ostwald's method. |                  | X   | X   |     |     |     |     |     |     |      |      |      |       |

|                                                        | ning Proce | ess |      | Rev No           | .: 1.0 |  | ĺ  |
|--------------------------------------------------------|------------|-----|------|------------------|--------|--|----|
| Doc Code: BS-SKIT.Ph5b1.F03                            |            |     |      | Date: 04-08-2019 |        |  |    |
| Title: Engineering Chemistry Lab                       | С          |     |      | Page: 6          | 6 / 36 |  |    |
| Copyright ©2017. cAAS. All rights reserved.            |            |     | <br> |                  |        |  |    |
| <b>18CHE27.6</b> Estimate amount of given × ×          | x x        |     |      |                  |        |  |    |
| sample using flame photo metric                        |            |     |      |                  |        |  |    |
| method.                                                |            |     |      |                  |        |  |    |
| <b>18CHE27.7</b> Estimation of hardness of given × ×   | x x        |     |      |                  |        |  |    |
| sample by using                                        |            |     |      |                  |        |  |    |
| complexometric titrations.                             |            |     |      |                  |        |  |    |
| <b>18CHE27.8</b> Caluculate the % of CaO in given × ×  | x x        |     |      |                  |        |  |    |
| sample by rapid EDTA method.                           |            |     |      |                  |        |  |    |
| <b>18CHE27.9</b> Estimate the % of copper in given × × | x x        |     |      |                  |        |  | L3 |
| brass sample by iodometric                             |            |     |      |                  |        |  | ĺ  |
| titration.                                             |            |     |      |                  |        |  | ĺ  |

| 5. Curricular Gap and Content |  |
|-------------------------------|--|

18CHE27.10 Calculate the % of iron in given ×

indicator method.

by redox titrations.

18CHE2711. Estimate

1

ore solution using external

total

impurities of given waste water

| <b>U</b> | 1         |                 |                  |                         |            |
|----------|-----------|-----------------|------------------|-------------------------|------------|
| SNo      | Gap Topic | Actions Planned | Schedule Planned | <b>Resources Person</b> | PO Mapping |
| 1        |           |                 |                  |                         |            |
| 2        |           |                 |                  |                         |            |
| 3        |           |                 |                  |                         |            |
| 4        |           |                 |                  |                         |            |
| 5        |           |                 |                  |                         |            |
|          |           |                 |                  |                         |            |
|          |           |                 |                  |                         |            |
| N.L. I   |           |                 |                  |                         |            |

х х

Х

х

oxidisable ×

Estimate the % of chlorine in given bleaching powder sample by iodometric method

L3

Note: Write Gap topics from A.4 and add others also.

#### 6. Content Beyond Syllabus

| SNo | Gap Topic | Actions Planned | Schedule Planned | Resources Person | PO Mapping |
|-----|-----------|-----------------|------------------|------------------|------------|
| 1   |           |                 |                  |                  |            |
| 2   |           |                 |                  |                  |            |
| 3   |           |                 |                  |                  |            |
| 4   |           |                 |                  |                  |            |
| 5   |           |                 |                  |                  |            |
| 6   |           |                 |                  |                  |            |
| 7   |           |                 |                  |                  |            |
| 8   |           |                 |                  |                  |            |
| 9   |           |                 |                  |                  |            |
| 10  |           |                 |                  |                  |            |
| 11  |           |                 |                  |                  |            |
| 12  |           |                 |                  |                  |            |
| 13  |           |                 |                  |                  |            |
| 14  |           |                 |                  |                  |            |
| 15  |           |                 |                  |                  |            |
|     |           |                 |                  |                  |            |
|     |           |                 |                  |                  |            |

Note: Anything not covered above is included here.

### C. COURSE ASSESSMENT

#### 1. Course Coverage

| 1.000.0000         | age   |            |                         |          |        |
|--------------------|-------|------------|-------------------------|----------|--------|
| Unit               | Title | Teachi     | No. of question in Exam | CO       | Levels |
| BSH<br>Prepared by |       | Checked by |                         | Approved |        |



Title: Engineering Chemistry Lab

| Copyric | ht ©2017. cAAS. All rights reserved.                                                                                     |             |       |       |       |       | -      | 1     | 1   |     |               |
|---------|--------------------------------------------------------------------------------------------------------------------------|-------------|-------|-------|-------|-------|--------|-------|-----|-----|---------------|
|         |                                                                                                                          | ng<br>Hours | CIA-1 | CIA-2 | CIA-3 | Asg-1 | .Asg-2 | Asg-3 | SEE |     |               |
|         |                                                                                                                          | TIOUIS      | PART  | - A   |       |       |        |       |     |     |               |
| 1       | Potentiometric estimation of FAS<br>using standard K 2 Cr 2 O 7<br>solution.                                             | 02          | 1     | -     | -     | -     | -      | -     | 1   | CO1 | L3<br>&<br>L4 |
| 2       | Conductometric estimation of acid mixture.                                                                               | 02          | 1     | -     | -     | -     | -      | -     | 1   | CO1 | L3<br>&<br>L4 |
| 3       | Determination of Viscosity co-<br>efficient of the given liquid using<br>Ostwald's viscometer.                           | 02          | 1     | -     | -     | -     | -      | -     | 1   | CO1 | L3<br>&<br>L4 |
| 4       | Colorimetric estimation of Copper.                                                                                       | 02          | 1     | -     | -     | -     | -      | -     | 1   | CO1 | L3<br>&<br>L4 |
| 5       | Determination of pKa of the given<br>weak acid using pH meter.                                                           | 02          | 1     | -     | -     | -     | -      | -     | 1   | CO1 | L3<br>&<br>L4 |
| 6       | Flame photometric estimation of sodium and potassium.                                                                    | 02          | 1     | -     | -     | -     | -      | -     | 1   | CO1 | L3<br>&<br>L4 |
|         |                                                                                                                          |             | PART  | - B   |       |       |        |       |     |     |               |
| 1       | Estimation of Total hardness of water by EDTA method.                                                                    | 02          | -     | 1     | -     | -     | -      | -     | 1   | CO2 | L3<br>&<br>L4 |
| 2       | Estimation of CaO in cement solution by rapid EDTA method.                                                               | 02          | -     | 1     | -     | -     | -      | -     | 1   | CO2 | L3<br>&<br>L4 |
| 3       | Determination of percentage of<br>Copper in brass using standard<br>sodium thiosulphate solution.                        |             | -     | 1     | -     | -     | -      | -     | 1   | CO2 | L3<br>&<br>L4 |
| 4       | Determination of COD of waste<br>water.                                                                                  |             | -     | 1     | -     | -     | -      | -     | 1   | CO2 | L3<br>&<br>L4 |
| 5       | Estimation of Iron in haematite ore<br>solution using standard K 2 Cr 2 O<br>7 solution by external<br>indicator method. | 02          | -     | 1     | -     | -     | -      | -     | 1   | CO2 | L3<br>&<br>L4 |
| 6       | Estimation of percentage of<br>available chlorine in the given<br>sample of bleaching powder                             |             | -     | 1     | -     | -     | -      | -     | 1   | CO2 | L3<br>&<br>L4 |
| -       | Total                                                                                                                    | 42          | 7     | 8     | 5     | 5     | 5      | 5     | 20  | -   | -             |
|         |                                                                                                                          |             |       |       |       |       |        |       |     |     |               |

Note: Write CO based on the theory course.

#### 2. Continuous Internal Assessment (CIA)

| Evaluation                               | Weightage in Marks | СО         | Levels        |
|------------------------------------------|--------------------|------------|---------------|
| CIA Exam – 1                             | 10                 | CO1,       | L3<br>&<br>L4 |
| CIA Exam – 2                             | 10                 | CO2,       | L3<br>&<br>L4 |
| CIA Exam – 3                             | 10                 | CO1 & CO2, | L3<br>&<br>L4 |
| Other Activities – define –<br>Slip test |                    |            | L2, L3, L4    |

| Section of the sectio | SKIT      | Teach                     | Rev No.: 1.0     |              |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------|------------------|--------------|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Doc Code: | BS-SKIT.Ph5b1.F03         | Date: 04-08-2019 |              |  |  |  |
| Arrent CHR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Title:    | Engineering Chemistry Lab | )                | Page: 8 / 36 |  |  |  |
| Copyright ©2017. CAAS. All rights reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                           |                  |              |  |  |  |
| Final C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IA Marks  | 10                        | -                | -            |  |  |  |

| SNo | Description                                  | Marks                  |
|-----|----------------------------------------------|------------------------|
| 1   | Observation and Weekly Laboratory Activities | 05 Marks               |
| 2   | Record Writing                               | 10 Marks for each Expt |
| 3   | Internal Exam Assessment                     | 15 Marks               |
| 4   | Internal Assessment                          | 40 Marks               |
| 5   | SEE                                          | 60 Marks               |
| -   | Total                                        | 100 Marks              |

<u>PART - A</u>

# D. EXPERIMENTS

# Experiment 01 : Potentiometric estimation of FAS using standard K2Cr2O7 solution.

| - | Experiment No.:                    | 1 Mar                                                          | ks                                                                                        | Date<br>Planned                          |                                                 | Date<br>Conducted |                                                                  |
|---|------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------|-------------------|------------------------------------------------------------------|
| 1 | Title                              | Potention                                                      | netric estimatio                                                                          | n of FAS using                           | g standard                                      | K 2 Cr 2 O 7 s    | olution.                                                         |
| 2 | <b>Course Outcomes</b>             |                                                                | n of amount of F                                                                          |                                          |                                                 |                   |                                                                  |
| 3 | Aim                                |                                                                | netric estimatio                                                                          |                                          | g standard                                      | K 2 Cr 2 O 7 s    | olution.                                                         |
| 4 | Material/<br>Equipment<br>Required | <ul> <li>Cal</li> <li>10r</li> <li>10c</li> <li>Gla</li> </ul> | gital Potentio met<br>lomel & Pt-electr<br>nl Burette<br>Oml beaker<br>ass rod.           | odes                                     |                                                 |                   |                                                                  |
| 5 |                                    | a, <b>PRINCIPLE</b>                                            | Redox titratio                                                                            | ns can be c                              | arried out                                      | potentiomet       | rically using                                                    |
|   | Principle, Concept                 | platinum-c                                                     | alomel electrode                                                                          | e combination                            | . For the read                                  | ction:            |                                                                  |
|   |                                    |                                                                | Reduced forr                                                                              | $n \rightarrow Oxidized$                 | form + ne <sup>-</sup> ,                        |                   |                                                                  |
|   |                                    | The p                                                          | otential, E,                                                                              | is giv                                   | en by                                           | Nernst            | equation,                                                        |
|   |                                    |                                                                |                                                                                           | 0                                        | ,                                               |                   |                                                                  |
|   |                                    | $E = E^{o} + \frac{1}{2}$                                      | $\frac{0.0591}{n}\log\frac{[\text{Oxio}]}{[\text{Red}]}$                                  | lized form]<br>uced form]                |                                                 |                   |                                                                  |
|   |                                    | Where, E°                                                      | is the standard p                                                                         | otential of the                          | e system, an                                    | d [X] represe     | nt the molar                                                     |
|   |                                    | concentrat                                                     | ion x.                                                                                    |                                          |                                                 |                   |                                                                  |
|   |                                    | Suppose t                                                      | hat, in beaker w                                                                          | e have acidifi                           | ed Fe²⁺ solu                                    | ution, and we     | add slowly                                                       |
|   |                                    | K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> from             | m a burette, then                                                                         | following rea                            | ction takes p                                   | olace.            |                                                                  |
|   |                                    |                                                                | 6 Fe <sup>2+</sup> + Cr <sub>2</sub> O <sub>7</sub> <sup>2-</sup> -                       | • 6 Fe <sup>3+</sup> + 2Cr <sup>3+</sup> |                                                 |                   |                                                                  |
|   |                                    | Before the                                                     | equivalence po                                                                            | oint, the poter                          | ntial is dete                                   | rmined by th      | ne Fe²⁺∕ Fe³⁺                                                    |
|   |                                    | system.                                                        |                                                                                           |                                          |                                                 |                   |                                                                  |
|   |                                    | $E = E^o + \frac{C}{2}$                                        | $\frac{0.0591}{n}\log\frac{\left[\mathrm{Fe}^{3+}\right]}{\left[\mathrm{Fe}^{2+}\right]}$ | =0.75V+0.0                               | $1591 \log \frac{[\text{Fe}^3]}{[\text{Fe}^2]}$ | +]<br>+]          |                                                                  |
|   |                                    | The potent                                                     | tial of the solutio                                                                       | n will be arou                           | nd 0.75V (sir                                   | nce the contr     | ibution from                                                     |
|   |                                    | the second                                                     | d term is negligib                                                                        | le).                                     |                                                 |                   |                                                                  |
|   |                                    | After the e                                                    | equivalence poir                                                                          | it, the potent                           | ial is detern                                   | nined by the      | e Cr <sub>2</sub> O <sub>7</sub> <sup>2-</sup> /Cr <sup>3+</sup> |
|   |                                    | system.                                                        |                                                                                           |                                          |                                                 |                   |                                                                  |

| Statement of a                              | SKIT      | Teaching Process          | Rev No.: 1.0     |  |  |  |  |
|---------------------------------------------|-----------|---------------------------|------------------|--|--|--|--|
|                                             | Doc Code: | BS-SKIT.Ph5b1.F03         | Date: 04-08-2019 |  |  |  |  |
| A A A A A A A A A A A A A A A A A A A       | Title:    | Engineering Chemistry Lab | Page: 9 / 36     |  |  |  |  |
| Copyright ©2017. cAAS. All rights reserved. |           |                           |                  |  |  |  |  |

| Copyric | ght ©2017. cAAS. All rights reserved. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                      |                           |                                 |                                                                                |  |  |  |  |
|---------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------|---------------------------------|--------------------------------------------------------------------------------|--|--|--|--|
|         | · · ·                                 | $E = E^{o} + \frac{0.0591}{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $-\log \frac{\left[\mathrm{Cr}_2 O_{7^{2-}}\right]}{\left[\mathrm{Cr}^{3^+}\right]}$ | $\frac{1}{2} = 1.33V + 0$ | $0.00985 \log \left[ - \right]$ | $\frac{\operatorname{Cr}_2 O_{7^{2-}}}{[\operatorname{Cr}_{3+}]}$              |  |  |  |  |
|         |                                       | The potential of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | he potential of the solution will be around 1.3V                                     |                           |                                 |                                                                                |  |  |  |  |
|         |                                       | At the equivalen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t the equivalence point, the potential is average potential of both systems.         |                           |                                 |                                                                                |  |  |  |  |
|         |                                       | Thus, there is an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | abrupt increa                                                                        | ase in poter              | itial of the so                 | lution near the end point.                                                     |  |  |  |  |
| 6       | Procedure,                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                      |                           |                                 | S) solution into a 100 ml                                                      |  |  |  |  |
|         |                                       | beaker. Add two                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | test tubes fu                                                                        | ll of dilute s            | ulphuric acic                   | l. Immerse the platinum -                                                      |  |  |  |  |
|         |                                       | calomel electroc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | les assembly                                                                         | in the solu               | tion. Measur                    | e the potential by adding                                                      |  |  |  |  |
|         |                                       | K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | from the bur                                                                         | ette in incre             | ements of 0.g                   | 5 cm <sup>3</sup> . Stir the mixture by                                        |  |  |  |  |
|         |                                       | blowing the air fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | or 10 seconds                                                                        | . Measure t               | he potential                    | of the each addition.                                                          |  |  |  |  |
|         |                                       | the equivalence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e point from<br>rmality of the                                                       | the grap                  | h. Knowing                      | shown in the figure. Find<br>the equivalence point,<br>rmine the amount of FAS |  |  |  |  |
| 7       | Reaction Equation                     | 6 Fe <sup>2+</sup> + C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cr₂O <sub>7</sub> ²- → 6 Fe <sup>3</sup>                                             | '⁺ + 2Cr <sup>3⁺</sup>    |                                 |                                                                                |  |  |  |  |
|         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                      | 201                       |                                 |                                                                                |  |  |  |  |
|         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                      |                           |                                 |                                                                                |  |  |  |  |
|         |                                       | Vol.of<br>K₂Cr₂O7 in cm³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E<br>in mv                                                                           | ΔV                        | ΔΕ                              | ΔΕ/ΔV                                                                          |  |  |  |  |
|         |                                       | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                      |                           |                                 |                                                                                |  |  |  |  |
|         |                                       | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                      |                           |                                 |                                                                                |  |  |  |  |
| 8       |                                       | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                      |                           |                                 |                                                                                |  |  |  |  |
|         | Observation Table,                    | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                      |                           |                                 |                                                                                |  |  |  |  |
|         |                                       | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                      |                           |                                 |                                                                                |  |  |  |  |
|         |                                       | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                      |                           |                                 |                                                                                |  |  |  |  |
|         |                                       | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                      |                           |                                 |                                                                                |  |  |  |  |
|         |                                       | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                      |                           |                                 |                                                                                |  |  |  |  |
|         |                                       | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                      |                           |                                 |                                                                                |  |  |  |  |
|         |                                       | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                      |                           |                                 |                                                                                |  |  |  |  |
|         |                                       | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                      |                           |                                 |                                                                                |  |  |  |  |
| 9       | Sample Calculations                   | $\frac{S}{S}$ $\frac{Calculations:}{(N_1 V_1) K_2 Cr_2 O_7 = .(N_2 V_2)_{FAS}}$ Where V <sub>1</sub> = Vol. of K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> at the equivalence point (from the graph)<br>N <sub>1</sub> = Normality of K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> solution =N (to be given)<br>V <sub>2</sub> = Vol. of FAS solution = 25 cm <sup>3</sup><br>N <sub>2</sub> = Normality of FAS solution =N<br>$\therefore N_2 = \frac{V_1 X N_1}{V_2} = \frac{X}{25} =N$ W k t Mass per dm <sup>3</sup> = Normality x Gram equivalent mass<br>Mass of FAS per dm <sup>3</sup> = Normality of FAS x Gram equivalent mass of<br>FAS $=X 392 g =g$ |                                                                                      |                           |                                 |                                                                                |  |  |  |  |

| and the second second                       | SKIT      | Teaching Process          | Rev No.: 1.0     |  |  |  |
|---------------------------------------------|-----------|---------------------------|------------------|--|--|--|
|                                             | Doc Code: | BS-SKIT.Ph5b1.F03         | Date: 04-08-2019 |  |  |  |
| Arrent CHR                                  | Title:    | Engineering Chemistry Lab | Page: 10 / 36    |  |  |  |
| Copyright ©2017, CAAS, All rights reserved. |           |                           |                  |  |  |  |

| Copyric | ght ©2017. cAAS. All rights reserved.                    |                                                                                                                          |  |  |  |
|---------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|
|         | ght ©2017. CAAS. All rights reserved.<br>Graphs, Outputs | $\frac{\Delta E}{\Delta V}$ Equivalence point (V)                                                                        |  |  |  |
| 11      | Results & Analysis                                       | Volume of K2Cr2O7 in cm3                                                                                                 |  |  |  |
|         |                                                          | Mass of FAS present in one dm <sup>3</sup> of solution =g                                                                |  |  |  |
| 12      |                                                          | Application of potentiometry to characterize acid and basic sites in humid substances Testing                            |  |  |  |
|         |                                                          | The Techniques to study complexation reactions at the mineral/water.                                                     |  |  |  |
|         |                                                          | Interface No indicator is used; instead the potential is measured across the analyte, typically an electrolyte solution. |  |  |  |
| 13      | Remarks                                                  |                                                                                                                          |  |  |  |
| -       | Faculty Signature<br>with Date                           |                                                                                                                          |  |  |  |

# Experiment 02 : Conductometric estimation of acid mixture

| -                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Experiment No.:                     | 2                 | Marks                                                                            |                        | Date<br>Planned                                                    |                                                                                               | Date<br>Conducted |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------|----------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------|------|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Title                               | Condu             | actometric e                                                                     | estimation of          | acid mixture                                                       |                                                                                               |                   |      |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Course Outcomes                     | Calcul<br>reactio | alculate amount of acid mixture conductometrically through neutralization action |                        |                                                                    |                                                                                               |                   |      |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Aim                                 | Condu             | ictometric e                                                                     | estimation of          | acid mixture                                                       | by using sta                                                                                  | ndard NaOH(       | 1N). |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Material /<br>Equipment<br>Required |                   | Digital Co<br>Conductiv<br>10ml Bure<br>100ml bea<br>Acid mixtu<br>1N NaOH       | ette<br>aker<br>ure    | r                                                                  |                                                                                               |                   |      |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     |                   |                                                                                  |                        |                                                                    | t sharp and<br>conductivity<br>ations is the<br>conductivity<br>ainst sodium<br>zation of the |                   |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                   | NaOH                                                                             | + HCl                  |                                                                    | • • • •                                                                                       | JaCl + H₂O        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                   | NaOH                                                                             | + CH <sub>3</sub> COOH |                                                                    | CH                                                                                            | H₃COONa + H       | 2O   |
| The addition of sodium hydroxide to hydrochloric a<br>conductance of the latter because highly mobile H <sup>+</sup> ions are<br>mobile Na <sup>+</sup> ion. This trend continues till all the H <sup>+</sup> ions of HC<br>continuing the addition of NaOH, conductance increas<br>neutralization of acetic acid. Further addition of NaOH rais<br>steeply due to the presence of free OH <sup>-</sup> ions. A typical titrat<br>the model graph. |                                     |                   |                                                                                  |                        | s are replaced<br>of HCl are new<br>creases slow<br>I raises the c | d by the less<br>utralized. On<br>/ly due the<br>conductance                                  |                   |      |

•

|         | S                        | KIT                  | Teaching Process                                                                                                                                                                                                                                                                                                                                                                                   | Rev No.: 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------|--------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Doc                      | Code:                | BS-SKIT.Ph5b1.F03                                                                                                                                                                                                                                                                                                                                                                                  | Date: 04-08-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Copyrid | ght ©2017. cAAS. All rig | itle:<br>hts reserve | Engineering Chemistry Lab                                                                                                                                                                                                                                                                                                                                                                          | Page: 11 / 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | Procedure                |                      | Fill a micro burette with the standard N<br>given acid mixture into a clean 100 cm <sup>3</sup><br>beaker so that the conductivity cell is co<br>Add 0.5 cm <sup>3</sup> NaOH solution from the bu-<br>the conductance. Continue the mea<br>addition of 0.5 cm <sup>3</sup> of NaOH till 10 cm <sup>3</sup> .<br>versus volume of NaOH on X-axis. The c<br>two breaks; the first one corresponds t | aOH solution. Pipette out 50 cm <sup>3</sup> of the<br>beaker. Place the conductivity cell in the<br>ompletely immersed in the acid mixture.<br>Irette. Stir the solution gently and record<br>surement of conductance after each<br>Plot a graph of conductance on Y- axis<br>conductance titration curve is marked by<br>o the equivalence point of HCl (V <sub>1</sub> cm <sup>3</sup> )<br>H (V <sub>2</sub> cm <sup>3</sup> ). From the graph, find the<br>NaOH required to neutralize the acids |
| 7       | Reaction Equ             | ation                | NaOH + HCl ——                                                                                                                                                                                                                                                                                                                                                                                      | → NaCl + H₂O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         |                          |                      | NaOH + CH3COOH                                                                                                                                                                                                                                                                                                                                                                                     | ← CH <sub>3</sub> COONa + H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         | Observation              |                      |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | Look-up<br>Output        | Table,               | Vol. of<br>NaOH (cm³)                                                                                                                                                                                                                                                                                                                                                                              | Conductance (mS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                          |                      | 0.0                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                          |                      | 0.5                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                          | -                    | 1.0                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                          |                      | 1.5                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                          |                      | 2.0                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                          |                      | 2.5                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                          |                      | 3.0                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                          |                      | 3.5                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                          |                      | 4.0                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                          |                      | 4.5                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                          |                      | 5.0                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 9       | Sample                   |                      | Normality of NaOH = N ( to be                                                                                                                                                                                                                                                                                                                                                                      | e given)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | Calculations             |                      | Volume of NaOH required to neutralize I                                                                                                                                                                                                                                                                                                                                                            | $HCl = V_1 cm^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                          |                      | Volume of NaOH required to neutralize (                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                          |                      | $N_{\rm HCl} = \frac{[N \times V]_{\rm NaOH}}{50} = \frac{\dots \times V_1}{50} = \dots$ $\rm NCH_3 COOH = \frac{[N \times (V_2 - V_1)]_{\rm NaOH}}{50} = \dots$                                                                                                                                                                                                                                   | =(b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                          |                      |                                                                                                                                                                                                                                                                                                                                                                                                    | ss of HCl= 'a' x 36.5 =<br><sub>DH</sub> x Eq.mass of CH <sub>3</sub> COOH = 'b' x 6                                                                                                                                                                                                                                                                                                                                                                                                                  |

| And the second second | SKIT      | Teaching Process          | Rev No.: 1.0     |
|-----------------------|-----------|---------------------------|------------------|
|                       | Doc Code: | BS-SKIT.Ph5b1.F03         | Date: 04-08-2019 |
|                       | Title:    | Engineering Chemistry Lab | Page: 12 / 36    |

| Copyri | ht ©2017. cAAS. All rights reserve | 94.                                                                                                                                                                                                        |
|--------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10     | Graphs, Outputs                    |                                                                                                                                                                                                            |
|        |                                    | $V_1$ $V_2$                                                                                                                                                                                                |
| 1      | Results & Analysis                 | <ol> <li>Normality of HCl =N</li> <li>Weight of HCl per liter =g</li> <li>Normality of CH<sub>3</sub>COOH =N</li> <li>Weight of CH<sub>3</sub>COOH per liter =N</li> </ol>                                 |
| 12     | Application Areas                  | The experimental determinations of the conducting properties of electrolytic solutions are very<br>important as they can be used to study quantitative behavior of ions in solution.                       |
|        |                                    | They can also be used to determine the many physical quantities such as degree of<br>dissociation and dissociation constants of weak acids and bases, ionic product of water,<br>solubility and solubility |
| 13     | Remarks                            |                                                                                                                                                                                                            |
|        | Faculty Signature<br>with Date     |                                                                                                                                                                                                            |

# Experiment 03 : Determination of Viscosity co-efficient of the given Organic liquid

| - | Experiment No.:                     | 3                                                             | Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | Date<br>Planned |              | Date<br>Conducted |             |
|---|-------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|--------------|-------------------|-------------|
| 1 | Title                               | Deterr<br>viscor                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Viscosity    | co-efficient    | of the giver | n liquid using    | g Ostwald's |
| 2 | Course Outcomes                     | Estima<br>metho                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | efficient of | viscosity of    | given organ  | ic liquid using   | g Ostwald's |
| 3 | Aim                                 | Deterr<br>viscor                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Viscosity    | co-efficient    | of the giver | n liquid using    | g Ostwald's |
| 4 | Material /<br>Equipment<br>Required |                                                               | 10ml grad<br>Organic L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •            |                 |              |                   |             |
| 5 | Theory                              | flowin<br>the fo<br>while<br>slow<br>backw<br>betwe<br>the ta | Viscosity arises due to frication between moving layers of a liquid. A liquid<br>lowing through a cylindrical tube of uniform diameter is expected to move in<br>he form of molecular layers. Layer close to the surface is almost stationary<br>while that t the axis of the tube moves faster than any other intermediate layer. A<br>slow moving layer excerts a drag or friction on its nearest moving layer<br>packwards. This property of the liquid, which retards or opposes the motion<br>between the layers, is called viscosity. The Coefficient of viscosity is defined as<br>he tangential force per unit area required maintaining a unit velocity gradient<br>between the two successive layers of the liquid situated unit distance apart. The |              |                 |              |                   |             |

| 6         | Den | SKIT<br>Doc Code:    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Teaching                                                                                                                                                                                                                                                                                              | Process                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                        | ev No.: 1.0                                                                                                                                                                                 |
|-----------|-----------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                                         | Title:               | BS-SKIT.Ph5b1<br>Engineering C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                        | ate: 04-08-2019<br>ge: 13 / 36                                                                                                                                                              |
| Copyright | t ©2017. cAAS                           | . All rights reserve |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | cosity of a liquid                                                                                                                                                                                                                                                                                    | is aiven by the                                                                                                                                                                                                                                      | Poiseuille's form                                                                                                                                                                                                                                      | ula.                                                                                                                                                                                        |
|           |                                         |                      | $\eta = \frac{\pi \operatorname{pr}^{4} t}{8 \operatorname{Vl}}$ Where 'v' is the pressure betwee volumes of the under identical of $\frac{\eta_{1}}{\eta_{2}} = \frac{t_{1} d_{1}}{t_{2} d_{2}}$ The time't' taken tube is determine the taken taken the taken taken the taken take | volume of the l<br>en the two ends o<br>two different liqu<br>conditions then,<br>n by the given liq<br>ned. The time't'<br>s measured. Kno<br>efficient of viscos                                                                                                                                    | iquid, 'r' is the<br>of the tube is th<br>iids are allowed<br>quid to travel t<br>taken by stanc<br>wing the densi                                                                                                                                   | radius of the tul<br>le Coefficient of v<br>d to flow through<br>hrough a certair<br>lard liquid to tra<br>ties of the two li                                                                                                                          | be and 'p' is the<br>viscosity. If equal<br>In the same tube<br>In distance in the<br>avel through the<br>quids (d1 and d2)                                                                 |
| 6 P       | Procedur                                | 9                    | Take a dry viso<br>Immerse the viso<br>cm <sup>3</sup> of the given<br>Suck the liquid<br>mark. Allow the<br>when the level of<br>Remove the viso<br>tiquid from the<br>rinse the viscom<br>Take out the viso<br>average time of<br>Using a thermo<br>temperature.Fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cometer. (Do not<br>cometer in wate<br>a liquid into the w<br>and fill the bulk<br>e liquid to flow of<br>the liquid cross<br>cometer from the<br>viscometer into the<br>viscometer and f<br>flow for deionize<br>ometer note the<br>myour teacher, g<br>r) and $\eta_2$ (Visco<br>coefficient of org | r bath and fix it<br>ider limb of the<br>o on the narrow<br>down through<br>es the lower m<br>e stand. Remov<br>the beaker. Usi<br>over for 20 minu<br>allow a similar<br>d water.(Use a c<br>e temperature<br>get the values c<br>osity coefficient | vertically to a s<br>viscometer usin<br>v limb slightly a<br>the capillary. Sta<br>ark. Note down t<br>ve the rubber tui<br>ng acetone (through<br>thes.<br>procedure for<br>different pipetter<br>of the water b<br>of d1 (density of co<br>of water) | tand. Transfer 15<br>g a pipette.<br>above the upper<br>art a stop clock<br>the time of flow.<br>be. Pour out the<br>ough a dropper)<br>determining the<br>for water).<br>bath. This is lab |
| 7 M       | 1odel Dia                               | agram                | $\eta_1 = \frac{t_1 d_1}{t_w d_w} X \eta_v$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                       | $\eta = \frac{\pi}{8}$                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                        | milli poise                                                                                                                                                                                 |
| L         | Dbservati<br>.ook-up<br>Dutput          |                      | OBSERVATION /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AND CALCULATI                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                      | v in seconds                                                                                                                                                                                                                                           |                                                                                                                                                                                             |
|           |                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Trial 1                                                                                                                                                                                                                                                                                               | Trial 2                                                                                                                                                                                                                                              | Trial 3                                                                                                                                                                                                                                                | Average                                                                                                                                                                                     |
|           |                                         |                      | Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                        |                                                                                                                                                                                             |
|           |                                         |                      | Test liquid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                        |                                                                                                                                                                                             |
|           | Sample<br>Calculatio                    | ons                  | Lab temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9 =                                                                                                                                                                                                                                                                                                   | °C                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                             |

| State of the        | SKIT                     | Teaching Process          | Rev No.: 1.0     |
|---------------------|--------------------------|---------------------------|------------------|
|                     | Doc Code:                | BS-SKIT.Ph5b1.F03         | Date: 04-08-2019 |
| ALCON DE            | Title:                   | Engineering Chemistry Lab | Page: 14 / 36    |
| Copyright ©2017. cA | AS. All rights reserved. |                           |                  |

|        | THUC.                                |                                                                                                           | i uge. 14 / 30                  |
|--------|--------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------|
| Copyri | ight ©2017. cAAS. All rights reserve |                                                                                                           |                                 |
|        |                                      | d1 (density of organic liquid) =                                                                          | g cm <sup>-3</sup>              |
|        |                                      | d <sub>w</sub> (density of water) = g cm <sup>-3</sup>                                                    |                                 |
|        |                                      | $\eta$ "(Viscosity coefficient of water) =                                                                | millipoise                      |
|        |                                      | $\frac{\eta_1}{\eta_w} = \frac{t_1 d_1}{t_w d_w}$                                                         |                                 |
|        |                                      | $\eta_1 = \frac{t_1 d_1}{t_w d_w} X \eta_w = \frac{\times \times \times}{\dot{c}}$                        | =milli poise                    |
| 10     | Graphs, Outputs                      | Viscosity coefficient of the given liquid                                                                 |                                 |
| 11     | Results & Analysis                   | Viscosity coefficient of the given liquid =                                                               | millipoise.                     |
| 12     | Application Areas                    | Viscosity is how engineers measure the resist                                                             | ance of fluids to shear stress. |
|        |                                      | The <b>viscosity</b> equation is useful for calculatin<br>know the force being applied to the fluid and t |                                 |
| 13     | Remarks                              |                                                                                                           |                                 |
| 14     | Faculty Signature<br>with Date       |                                                                                                           |                                 |

# Experiment 04 : Keywords and identifiers

| - | Experiment No.:                        | 4                                          | Marks                                                                                                                 |                                                                                                                                      | Date<br>Planned                                                                                                    |                                                                                                            | Date<br>Conducted                                               |                                                                            |
|---|----------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------|
| 1 | Title                                  | Colori                                     | metric estin                                                                                                          | hation of Cop                                                                                                                        | per.                                                                                                               | I                                                                                                          |                                                                 |                                                                            |
| 2 | Course Outcomes                        | Comp                                       | ute the amo                                                                                                           | ount of Cu by                                                                                                                        | measuring a                                                                                                        | absorbance u                                                                                               | using optical I                                                 | method                                                                     |
| 3 | Aim                                    | Colori                                     | metric estin                                                                                                          | nation of Cop                                                                                                                        | per by a give                                                                                                      | enCuSO4 sol                                                                                                | ution .                                                         |                                                                            |
| 4 | Material /                             | >                                          | Photo col                                                                                                             | orimeter                                                                                                                             |                                                                                                                    |                                                                                                            |                                                                 |                                                                            |
|   | Equipment                              | $\succ$                                    | Cuvate tu                                                                                                             |                                                                                                                                      |                                                                                                                    |                                                                                                            |                                                                 |                                                                            |
|   | Required                               |                                            | -                                                                                                                     | metric flask                                                                                                                         |                                                                                                                    |                                                                                                            |                                                                 |                                                                            |
|   |                                        |                                            |                                                                                                                       | ılphate solut                                                                                                                        | ions                                                                                                               |                                                                                                            |                                                                 |                                                                            |
|   |                                        |                                            | NH3 solut                                                                                                             |                                                                                                                                      | <u></u>                                                                                                            | <u></u>                                                                                                    |                                                                 |                                                                            |
| 5 | Theory, Formula,<br>Principle, Concept | part (                                     |                                                                                                                       |                                                                                                                                      |                                                                                                                    |                                                                                                            |                                                                 |                                                                            |
|   |                                        | Thus,                                      | $ _{o} =  _{a} +  _{r} +  _{t}$                                                                                       |                                                                                                                                      |                                                                                                                    |                                                                                                            |                                                                 |                                                                            |
|   |                                        |                                            |                                                                                                                       |                                                                                                                                      | I                                                                                                                  |                                                                                                            |                                                                 |                                                                            |
|   |                                        | Absor                                      | bance is giv                                                                                                          | en as A = lo                                                                                                                         | g $\overline{I_t}$                                                                                                 |                                                                                                            |                                                                 |                                                                            |
|   |                                        |                                            | e, E = molar<br>colo<br>C= Mola                                                                                       | red substand                                                                                                                         |                                                                                                                    | wave length                                                                                                | ny particular<br>1 of light,                                    |                                                                            |
|   |                                        | Chem<br>wavel<br>wavel<br>the th<br>consta | When the<br>bance, A, ag<br>ical analysis<br>ength is kn<br>ength by a<br>nickness of<br>ant, the abso<br>A series of | e path length<br>lainst concer<br>s through me<br>lown as colo<br>substance in<br>the solution<br>orbance direct<br>f solutions with | atration, c, giv<br>easurements<br>primetry. The<br>solution vari<br>n. When the<br>ctly depends<br>th different c | ves a straight<br>of absorptic<br>absorbance<br>ies directly v<br>thickness<br>upon the cc<br>oncentration | on of light of<br>e of light of<br>vith its conce<br>of the med | a particular<br>a particular<br>ntration and<br>ium is kept<br>nonium ions |

|      | SKIT<br>Doc Co<br>Title:                        | de: BS-SKIT.Ph5b:                                                                                                                           |                                                                                                                                                                               | Process                                                                                                                                   | Da                                                                                                                                                                              | v No.: 1.0<br>te: 04-08-2019<br>ge: 15 / 36                                                                                |
|------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| pyri | ight ©2017. cAAS. All rights re                 | served.                                                                                                                                     |                                                                                                                                                                               | <b>T</b> I                                                                                                                                |                                                                                                                                                                                 | Ť                                                                                                                          |
|      |                                                 |                                                                                                                                             | on is also meas                                                                                                                                                               |                                                                                                                                           | ce of cupramm<br>unknown volume                                                                                                                                                 |                                                                                                                            |
| 6    | Procedure                                       | five flasks. Take<br>solution to each<br>minutes, set the<br>instrument. The<br>same settings.<br>Draw a<br>on y- axis. (Draw               | e the unknown s<br>n one of the six fl<br>e absorbance of<br>en, measure the<br>calibration curve<br>w a straight line p                                                      | olution in the si<br>asks. Dilute up to<br>first solution to<br>absorbance of r<br>by volume of C<br>passing through<br>solutions, find o | 0, 15 and 20 cm <sup>3</sup><br>x flasks. Add 5 c<br>o the mark and r<br>zero at <b>620 nm</b><br>emaining five sc<br>CuSO₄ on x-axis a<br>the origin). Using<br>out the volume | cm <sup>3</sup> of ammoni<br>nix well. After 1<br>radiations in th<br>plutions with th<br>and absorbanc<br>g the graph and |
|      | Model Diagram                                   |                                                                                                                                             |                                                                                                                                                                               |                                                                                                                                           |                                                                                                                                                                                 |                                                                                                                            |
| 7    | inodet Blagram                                  |                                                                                                                                             |                                                                                                                                                                               |                                                                                                                                           |                                                                                                                                                                                 | _                                                                                                                          |
|      |                                                 |                                                                                                                                             |                                                                                                                                                                               |                                                                                                                                           |                                                                                                                                                                                 |                                                                                                                            |
| 8    | Observation Tak<br>Look-up Tak<br>Output        |                                                                                                                                             | Vol. of CuSO₄<br>in cm³                                                                                                                                                       | Volume of<br>ammonia sol.<br>in cm³                                                                                                       | Concentration<br>of copper<br>=1.018 mg x<br>vol. of                                                                                                                            | Absorbance                                                                                                                 |
| 8    | Look-up Tak                                     | ble,                                                                                                                                        | in cm <sup>3</sup>                                                                                                                                                            | ammonia sol.<br>in cm³                                                                                                                    | of copper<br>=1.018 mg x                                                                                                                                                        | Absorbance                                                                                                                 |
| 8    | Look-up Tak                                     |                                                                                                                                             | 0.0                                                                                                                                                                           | ammonia sol.<br>in cm <sup>3</sup>                                                                                                        | of copper<br>=1.018 mg x<br>vol. of                                                                                                                                             | Absorbance                                                                                                                 |
| 8    | Look-up Tak                                     | ble,                                                                                                                                        | 0.0<br>5.0                                                                                                                                                                    | ammonia sol.<br>in cm³                                                                                                                    | of copper<br>=1.018 mg x<br>vol. of                                                                                                                                             | Absorbance                                                                                                                 |
| 8    | Look-up Tak                                     | (Blank sol.)                                                                                                                                | in cm <sup>3</sup><br>0.0<br>5.0<br>10.0                                                                                                                                      | ammonia sol.<br>in cm <sup>3</sup><br>5.0<br>5.0<br>5.0                                                                                   | of copper<br>=1.018 mg x<br>vol. of                                                                                                                                             | Absorbance                                                                                                                 |
| 8    | Look-up Tak                                     | (Blank sol.)<br>(Blank sol.)<br>1<br>2<br>3                                                                                                 | in cm <sup>3</sup><br>0.0<br>5.0<br>10.0<br>15.0                                                                                                                              | ammonia sol.<br>in cm <sup>3</sup><br>5.0<br>5.0<br>5.0<br>5.0<br>5.0                                                                     | of copper<br>=1.018 mg x<br>vol. of                                                                                                                                             | Absorbance                                                                                                                 |
| 8    | Look-up Tak                                     | (Blank sol.)<br>(Blank sol.)<br>1<br>2<br>3<br>4                                                                                            | in cm <sup>3</sup><br>0.0<br>5.0<br>10.0<br>15.0<br>20.0                                                                                                                      | ammonia sol.<br>in cm <sup>3</sup><br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0                                                              | of copper<br>=1.018 mg x<br>vol. of                                                                                                                                             | Absorbance                                                                                                                 |
| 8    | Look-up Tak                                     | (Blank sol.)<br>(Blank sol.)<br>1<br>2<br>3                                                                                                 | in cm <sup>3</sup><br>0.0<br>5.0<br>10.0<br>15.0<br>20.0<br>25.0                                                                                                              | ammonia sol.<br>in cm <sup>3</sup><br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0                                                       | of copper<br>=1.018 mg x<br>vol. of                                                                                                                                             | Absorbance                                                                                                                 |
|      | Look-up Tat<br>Output                           | (Blank sol.)<br>(Blank sol.)<br>1<br>2<br>3<br>4<br>5<br>                                                                                   | in cm <sup>3</sup><br>0.0<br>5.0<br>10.0<br>15.0<br>20.0<br>25.0<br>Unknown                                                                                                   | ammonia sol.<br>in cm <sup>3</sup><br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0                                         | of copper<br>=1.018 mg x<br>vol. of<br>solution                                                                                                                                 | Absorbance                                                                                                                 |
|      | Look-up Tak                                     | (Blank sol.)<br>(Blank sol.)<br>1<br>2<br>3<br>4<br>5<br>1000 cm <sup>3</sup> of sto<br>249.54 g of CuS                                     | in cm <sup>3</sup><br>0.0<br>5.0<br>10.0<br>15.0<br>20.0<br>25.0<br>Unknown<br>ck solution conta<br>$O_{4}.5H_{2}O = 63.54$ g                                                 | ammonia sol.<br>in cm <sup>3</sup><br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0                                  | of copper<br>=1.018 mg x<br>vol. of<br>solution                                                                                                                                 |                                                                                                                            |
|      | Look-up Tak<br>Output<br>Sample                 | $(Blank sol.)$ $(Blank sol.)$ $1$ $2$ $3$ $4$ $5$ $1000 cm3 of sto$ $249.54 g of CuSO$ $4 g of CuSO_{4}.51$ solution $1 cm3 of CuSO_{4}.51$ | in cm <sup>3</sup><br>0.0<br>5.0<br>10.0<br>15.0<br>20.0<br>25.0<br>Unknown<br>ck solution conta<br>$O_4.5H_2O = 63.54$ g<br>$H_2O = 63.54 \times 4$ /<br>$5H_2O = 1.018/100$ | ammonia sol.<br>in cm <sup>3</sup><br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0                                  | of copper<br>=1.018 mg x<br>vol. of<br>solution<br>4. 5H <sub>2</sub> O<br>g of Cu per 100<br>of Cu = 1.018 mg                                                                  | 00 cm <sup>3</sup> of stoc                                                                                                 |
| 9    | Look-up Tat<br>Output<br>Sample<br>Calculations | $(Blank sol.)$ $(Blank sol.)$ $1$ $2$ $3$ $4$ $5$ $1000 cm3 of sto$ $249.54 g of CuSO$ $4 g of CuSO_{4}.51$ solution $1 cm3 of CuSO_{4}.51$ | in cm <sup>3</sup><br>0.0<br>5.0<br>10.0<br>15.0<br>20.0<br>25.0<br>Unknown<br>ck solution conta<br>$O_4.5H_2O = 63.54$ g<br>$H_2O = 63.54 \times 4$ /<br>$5H_2O = 1.018/100$ | ammonia sol.<br>in cm <sup>3</sup><br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0                                  | of copper<br>=1.018 mg x<br>vol. of<br>solution<br>4. 5H <sub>2</sub> O<br>g of Cu per 100                                                                                      | 00 cm <sup>3</sup> of stoc                                                                                                 |
| 9    | Look-up Tak<br>Output<br>Sample                 | $(Blank sol.)$ $(Blank sol.)$ $1$ $2$ $3$ $4$ $5$ $1000 cm3 of sto$ $249.54 g of CuSO$ $4 g of CuSO_{4}.51$ solution $1 cm3 of CuSO_{4}.51$ | in cm <sup>3</sup><br>0.0<br>5.0<br>10.0<br>15.0<br>20.0<br>25.0<br>Unknown<br>ck solution conta<br>$O_4.5H_2O = 63.54$ g<br>$H_2O = 63.54 \times 4$ /<br>$5H_2O = 1.018/100$ | ammonia sol.<br>in cm <sup>3</sup><br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0                                  | of copper<br>=1.018 mg x<br>vol. of<br>solution<br>4. 5H <sub>2</sub> O<br>g of Cu per 100<br>of Cu = 1.018 mg                                                                  | 00 cm <sup>3</sup> of stoc                                                                                                 |

| A REAL PROPERTY OF | SKIT      | Teaching Process          | Rev No.: 1.0     |
|--------------------|-----------|---------------------------|------------------|
|                    | Doc Code: | BS-SKIT.Ph5b1.F03         | Date: 04-08-2019 |
| A REAL OFF         | Title:    | Engineering Chemistry Lab | Page: 16 / 36    |

| Copyrie | ght ©2017. cAAS. All rights reserve | sd.                                                                                  |
|---------|-------------------------------------|--------------------------------------------------------------------------------------|
|         |                                     |                                                                                      |
|         |                                     |                                                                                      |
|         |                                     |                                                                                      |
|         |                                     |                                                                                      |
|         |                                     |                                                                                      |
|         |                                     |                                                                                      |
|         |                                     |                                                                                      |
|         |                                     |                                                                                      |
|         |                                     |                                                                                      |
|         |                                     |                                                                                      |
|         |                                     |                                                                                      |
|         |                                     |                                                                                      |
|         |                                     |                                                                                      |
|         |                                     |                                                                                      |
|         |                                     |                                                                                      |
|         |                                     |                                                                                      |
| 11      | Results                             | <b>REPORT</b> : Volume of CuSO <sub>4</sub> in the unknown solution =cm <sup>3</sup> |
|         |                                     |                                                                                      |
|         |                                     |                                                                                      |
|         |                                     | Mass of Cu in the unknown solution =mg                                               |
|         |                                     |                                                                                      |
|         |                                     |                                                                                      |
| 12      | Application Areas                   | Colorimeters are widely used to monitor the growth of a bacterial or yea             |
|         |                                     | culture.                                                                             |
|         |                                     |                                                                                      |
|         |                                     | Colorimeters are used to measure and monitor the color in various foods an           |
|         |                                     | beverages, including vegetable products and sugar.                                   |
| 4.9     |                                     |                                                                                      |
|         | Remarks                             |                                                                                      |
| 14      | Faculty Signature                   |                                                                                      |
|         | with Date                           |                                                                                      |
|         | with Date                           |                                                                                      |

# Experiment 05 : Determination of pKa of the given sample using pH meter.

| - | Experiment No.:    | 5      | Marks                       |                                                  | Date           |                | Date             |                     |
|---|--------------------|--------|-----------------------------|--------------------------------------------------|----------------|----------------|------------------|---------------------|
|   |                    |        | i la la                     |                                                  | Planned        |                | Conducted        |                     |
| 1 | Title              | Detei  | rmination of                | f pKa of the g                                   |                | usina pH me    |                  |                     |
| 2 | Course Outcomes    |        |                             | f pKa of the g                                   |                |                |                  |                     |
|   | Aim                |        |                             | f pKa of the g                                   |                |                |                  |                     |
| - | Material /         |        | Digital Pl                  |                                                  |                |                |                  |                     |
| - | Equipment Required |        | 10ml Bur                    |                                                  |                |                |                  |                     |
|   |                    | •      | 100ml be                    | eaker                                            |                |                |                  |                     |
|   |                    | •      |                             | ng glass elect                                   | rodes          |                |                  |                     |
|   |                    |        |                             | id(HCOOH OF                                      |                | )              |                  |                     |
|   |                    | •      | 1N NaOH                     | I Solution                                       |                |                |                  |                     |
|   |                    | •      | Stirrer                     |                                                  |                |                |                  |                     |
|   |                    |        |                             | olutions(pH4, p                                  |                |                |                  |                     |
| 5 | Theory             |        |                             | n acid, which                                    |                |                |                  |                     |
|   |                    |        |                             | acid CH <sub>3</sub> COO                         |                | make a solu    | ition of this a  | cid, a part of      |
|   |                    |        |                             | les dissociate                                   | <u>.</u>       |                |                  |                     |
|   |                    | , °    |                             | H <sub>3</sub> COO <sup>-</sup> + H <sup>+</sup> |                |                |                  | i                   |
|   |                    | Fortr  | lis reaction,               | the equilibriu                                   | im constant,   | ka, is given   | by the equal     | ion:                |
|   |                    | Ka     | $[H^{+}]X[C$                | H <sub>3</sub> COO                               |                |                |                  |                     |
|   |                    | Ки     | $=\frac{[H^+]X[C]}{[CH_3]}$ | COOH                                             |                |                |                  |                     |
|   |                    |        | -                           | n as acid diss                                   | ociation con   | stant.         |                  |                     |
|   |                    |        |                             | garithm to bas                                   |                |                | ic., pKa = - loo | g <sub>10</sub> Ka. |
|   |                    | Cons   | ider a solut                | ion of a weak                                    | k acid; say ad | cetic acid, in | a beaker. Le     | et 'Ka' be the      |
|   |                    | acid ( | dissociation                | constant.                                        |                |                |                  |                     |
|   |                    |        |                             | neutralized                                      |                |                |                  |                     |
|   |                    |        |                             | n of base to t                                   |                |                |                  |                     |
|   |                    |        |                             | artial neutrali                                  |                | is related to  | o pKa of the     | acid by the         |
|   |                    |        |                             | selbalcs equa                                    | ition,         |                |                  |                     |
|   |                    | ո⊔     | - nKa±lo                    | Salt                                             |                |                |                  |                     |
|   |                    | pu     | =pKa+log                    | Acid                                             |                |                |                  |                     |
|   |                    |        |                             | e acid agains                                    | st NaOH th     | e pH of the    | e mixture in     | the beaker          |
|   | 1                  | 1 WC   |                             | acia agains                                      |                |                |                  | and bound           |

| A CONTRACTOR                   | SKIT                             |                                                                                                                                                                                                            | Teaching I                                                                                                                                                                                                        | Process                                                                                                                                                                                                                 | Re                                                                                                                                                                                                           | v No.: 1.0                                                                                                                                                                |  |  |
|--------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                | Doc Code:                        | -                                                                                                                                                                                                          | -03                                                                                                                                                                                                               |                                                                                                                                                                                                                         |                                                                                                                                                                                                              | te: 04-08-2019                                                                                                                                                            |  |  |
| Copyright ©2017 cA             | Title:<br>AS. All rights reserve | 0 0                                                                                                                                                                                                        | Engineering Chemistry Lab Page: 17 / 36                                                                                                                                                                           |                                                                                                                                                                                                                         |                                                                                                                                                                                                              |                                                                                                                                                                           |  |  |
|                                |                                  | get a 'S' shape<br>equivalence poi<br>the Henderson e<br>PROCEDURE: Pi<br>Immerse the co<br>terminals to a pl<br>micro burette in<br>measure the pH<br>Plot a graph<br>equivalence poi<br>half equivalence | d curve. We fin<br>nt. At half equiv<br>equation pH bec<br>pette out 25 cm<br>ombined glass e<br>H meter. Measur<br>increments of C<br>. (After the jump<br>of ΔpH/ΔV ag<br>nt. Plot another<br>e point (Which is | d that there w<br>valence point, l<br>comes equal to<br>of the given w<br>electrode into t<br>re the pH of the<br>0.5 cm <sup>3</sup> . After ea<br>in the pH, take<br>ainst volume<br>graph pH/ volu<br>nothing but pk | vill be sharp jum<br>Salt] = [Acid]. Thu<br>pKa at half equiv<br>weak acid into a<br>the acid. Connect<br>acid. Add NaOH<br>ach addition, stir<br>six more reading<br>of NaOH and<br>ume of NaOH, an<br>(a). | us, according to<br>valence point.<br>100 cm <sup>3</sup> beaker.<br>It the electrode<br>solution from a<br>the solution and<br>gs).<br>determine the<br>d note the pH at |  |  |
| 6 Procedu<br>7 Model I         | Jiagram                          | pipette. Immerse<br>and connect the<br>burette with the<br>0.5cm <sup>3</sup> , stir the<br>Continue the pre-<br>few more reading<br>Plot a graph of<br>Plot a graph of                                    | e a glass electro<br>e cell to a pH r<br>base (sodium h<br>solution caref<br>ocedure till the<br>gs after that. Tal<br>apH/aV agair<br>pH (ordinate) a                                                            | ode - calomel e<br>neter. Measure<br>nydroxide). Now<br>ully, and meas<br>pH shows a te<br>pulate the read<br>nst V and deter<br>gainst the volu                                                                        | mine the equivant<br>me of sodium h                                                                                                                                                                          | bly into the acid<br>acid. Fill a micro<br>le increments of<br>ter 10 seconds.<br>ase rapidly. Take                                                                       |  |  |
| 8 Observa<br>Look-up<br>Output |                                  |                                                                                                                                                                                                            | P <sup>H</sup>                                                                                                                                                                                                    | Δ٧                                                                                                                                                                                                                      | Δ Ρ <sup>μ</sup>                                                                                                                                                                                             | Δ Ρ <sup>+</sup><br><br>ΔV                                                                                                                                                |  |  |
|                                |                                  | 0.0                                                                                                                                                                                                        |                                                                                                                                                                                                                   |                                                                                                                                                                                                                         |                                                                                                                                                                                                              |                                                                                                                                                                           |  |  |
|                                |                                  | 0.5                                                                                                                                                                                                        |                                                                                                                                                                                                                   |                                                                                                                                                                                                                         |                                                                                                                                                                                                              |                                                                                                                                                                           |  |  |
|                                |                                  | 1.0                                                                                                                                                                                                        |                                                                                                                                                                                                                   |                                                                                                                                                                                                                         |                                                                                                                                                                                                              |                                                                                                                                                                           |  |  |
|                                |                                  | 1.5                                                                                                                                                                                                        |                                                                                                                                                                                                                   |                                                                                                                                                                                                                         |                                                                                                                                                                                                              |                                                                                                                                                                           |  |  |
|                                |                                  | 2.0                                                                                                                                                                                                        |                                                                                                                                                                                                                   |                                                                                                                                                                                                                         |                                                                                                                                                                                                              |                                                                                                                                                                           |  |  |
|                                |                                  | 2.5                                                                                                                                                                                                        |                                                                                                                                                                                                                   |                                                                                                                                                                                                                         |                                                                                                                                                                                                              |                                                                                                                                                                           |  |  |
|                                |                                  | 3.0                                                                                                                                                                                                        |                                                                                                                                                                                                                   |                                                                                                                                                                                                                         |                                                                                                                                                                                                              |                                                                                                                                                                           |  |  |
|                                |                                  | 3.5                                                                                                                                                                                                        |                                                                                                                                                                                                                   |                                                                                                                                                                                                                         |                                                                                                                                                                                                              |                                                                                                                                                                           |  |  |
|                                |                                  | 4.0                                                                                                                                                                                                        |                                                                                                                                                                                                                   |                                                                                                                                                                                                                         |                                                                                                                                                                                                              |                                                                                                                                                                           |  |  |
|                                |                                  | 4.0                                                                                                                                                                                                        |                                                                                                                                                                                                                   |                                                                                                                                                                                                                         | 1                                                                                                                                                                                                            | 1                                                                                                                                                                         |  |  |
|                                |                                  | ΛΕ                                                                                                                                                                                                         |                                                                                                                                                                                                                   |                                                                                                                                                                                                                         |                                                                                                                                                                                                              |                                                                                                                                                                           |  |  |
|                                |                                  | 4.5<br>5.0                                                                                                                                                                                                 |                                                                                                                                                                                                                   |                                                                                                                                                                                                                         |                                                                                                                                                                                                              |                                                                                                                                                                           |  |  |

|    | ght ©2017. CAP<br>Graphs | SKIT<br>Doc Code:<br>Title:<br>AS. All rights reserved |             | Chemistry Lab                         | Rev No.: 1.0<br>Date: 04-08-2019<br>Page: 18 / 36<br>Equivalence point (V)<br>alf Equivalence point (V/2)<br>Volume of NaOH in cm3 |
|----|--------------------------|--------------------------------------------------------|-------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 11 | Results                  |                                                        | REPORT: The | e pKa of the given acid =             |                                                                                                                                    |
| 12 | Applicat                 |                                                        |             | ement of pH is used in medical elec   | tronics engineering.                                                                                                               |
| 13 | Remarks                  | 6                                                      |             | · · · · · · · · · · · · · · · · · · · |                                                                                                                                    |
| 14 | Faculty<br>with Dat      | Signature<br>e                                         |             |                                       |                                                                                                                                    |

# Experiment 06 : Flame photometric estimation of sodium and potassium.

| - | Experiment No.:                     | 6                                 | Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          | Date<br>Planned                             | Co                                                     | Date<br>Inducted                                                        |                                                              |
|---|-------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------|
| 1 | Title                               | Flam                              | e photomet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ric estimation                                                           | of sodium a                                 | nd potassium.                                          |                                                                         |                                                              |
| 2 | Course Outcomes                     | -                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U                                                                        |                                             | ng Flame photo                                         | metric.                                                                 |                                                              |
| 3 | Aim                                 | Flam                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                             | nd potassium.                                          |                                                                         |                                                              |
| 4 | Material /<br>Equipment<br>Required |                                   | Stock sol<br>6 numbe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | notometer FLA<br>lutions of Na*a<br>ered 100 ml vo<br>pettes: 1, 2, 10 r | and K⁺ , c = 1<br>lumetric flas             | mg/ml.                                                 | B<br>• 10                                                               | oml<br>urette<br>20ml                                        |
| 5 | Theory                              | salts                             | - End of the second sec | CIGITAL DA METER                                                         | a vapour, w                                 | which contains n                                       | Flame p<br>is an<br>emission<br>used<br>detection<br>If a<br>containing | technique<br>for the<br>of metals.<br>solution<br>g metallic |
|   |                                     | excite<br>by ma<br>these<br>where | electrons fro<br>ed from gro<br>aking use of<br>electrons v<br>e n=2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f thermal ener<br>will return to t                                       | to higher er<br>gy of flame.<br>he ground s | nergy state (En)<br>From higher en<br>tate by emitting | ergy states                                                             |                                                              |
|   |                                     | NaC                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          | sociation                                   | sion)<br>Na(g) + Cl (g)                                |                                                                         |                                                              |
|   |                                     |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          | K*                                          |                                                        |                                                                         |                                                              |

|        | and the second second | SKIT                    |                                                                                                                                                                                                                                                                                                                                                                                                                                      | Teaching Process                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                             | Rev No.: 1.0                                                                                                                                                                                                                                                                                                                                                |
|--------|-----------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4      |                       | Doc Code:               | BS-SKIT.Ph5b1.F03                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                             | Date: 04-08-2019                                                                                                                                                                                                                                                                                                                                            |
| 1      |                       | Title:                  | Engineering Chemis                                                                                                                                                                                                                                                                                                                                                                                                                   | try Lab                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                             | Page: 19 / 36                                                                                                                                                                                                                                                                                                                                               |
| Copyri | ight ©2017. cA        | AS. All rights reserved | Excitation Er<br>KCl (s)KCl (g)<br>KCl (s)KCl (g)<br>Flame photometer co<br>these elements.It is<br>easily excited (sodium<br>A flame photometer i<br>fuel gases, an automis<br>filter of the element<br>between the flame a<br>oxygen is used as oxi<br>1900°C. The whole ar<br>rate of introduction o<br>analyte is aspirated ir<br>flame is collected by<br>which permits only<br>investigation into the<br>concentration and nat | orrelates the emitt<br>simple and rapid<br>n and other alkali m<br>is composed of the<br>ser, burner, photos<br>t whose concentrand<br>the detector. F<br>idant. Combination<br>nalysis depends of<br>f the sample and allow<br>the radiation of<br>the radiation of<br>the sample and allow<br>the radiation of<br>photocell. The out<br>ture of the element<br>Vapourisation<br>MX | reed radiations with t<br>method for the ele-<br>netals).<br>e pressure regulato<br>sensitive detector an<br>ration is to be dete<br>Propane gas is use<br>of these two will gi<br>n the flow rate of the<br>droplet size. The sa<br>ugh automiser. Rad<br>owed to pass throuch<br>characteristic of the<br>typut from the photo<br>t<br>Dissociation<br>MX | the concentration of<br>ements that can be<br>r and flow meter for<br>nd output recorder. A<br>ermined is inserted<br>d as fuel and air or<br>ive a temperature of<br>he fuel, oxidant, the<br>mple containing the<br>iation from resulting<br>ugh an optical filter,<br>he element under<br>ocell represents the<br>Thermal<br>excitation<br>M (gas) + Gas |
|        |                       |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                      | (g) Flame emission,                                                                                                                                                                                                                                                                                                                                         | h●                                                                                                                                                                                                                                                                                                                                                          |
| 6      | Procedu               |                         | Flame photometer us<br>improperly!<br>Switch the instrument<br>Note: Check the flame<br>the gas valve immedia<br>Transfer 5,10,15,20 an<br>prepared by weighing<br>dissolving the crysta<br>water and mixing. The<br>flasks and dilute up to<br>the suction capillary of<br>read zero. Place each<br>the instrument to rea<br>between each reading<br>and place the solution                                                         | t on and off under s<br>e during work if it g<br>ately With Eppend<br>nd 25 cm <sup>3</sup> of stanc<br>g accurately 2.542g<br>Is and diluting the<br>e solution gives 1pp<br>o the mark with dis<br>of the instrument an<br>n of the standard s<br>id 5,10,15,20 and 2g<br>g). Dilute the given                                                                                     | supervision!<br>goes out, close<br>orf flame photomete<br>dard sodium chlorid<br>g NaCl into a 1 liter<br>e solution upto the<br>om /ml ) into 100ml<br>stilled water. Place t<br>nd set the instrumer<br>solutions in the sucti<br>5 respectively (rinse<br>n test solution upto t                                                                         | er:<br>de solution (which is<br>volumetric flask and<br>e mark with distilled<br>standard volumetric<br>the distilled water in<br>nt to<br>ion capillary and set<br>e with distilled water<br>the mark, shake well                                                                                                                                          |

Ż

->

| 4       |                              | SKIT                   |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                            | aching Proce                                                                                                                                                                                                                                                                                      | SS                                                                                                                                                                                                                                                                                                                                  | Rev No.: 1.0                                                               |
|---------|------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
|         | - (39)                       | Doc Code:<br>Title:    | BS-SKIT.Ph                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                            | ala                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                     | Date: 04-08-2019                                                           |
| Copyrig | ght ©2017. cAA               | S. All rights reserved | ł. '                                                                                                                                                                                                                                                                                                                                      | g Chemistry L                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                     | Page: 20 / 36                                                              |
|         | ght ©2017. cAA               |                        | calibration c<br>axis). From t<br>given test s<br>contains 23<br>Determination<br>the same pr<br>1. Let the ins<br>2. Feed disti<br>3. Select the<br>"Elements<br>4. Turn the c<br>o". Pull the<br>readout to<br>Readjust C<br>5. Aspirate th<br>(solution n<br>350 (on up<br>6. Aspirate c<br>7. Aspirate s<br>then stan<br>8. Repeat 3- | he calibration<br>olution and fr<br>g of Na).<br>on of Potassiu<br>ocedure gives<br>trument warr<br>lled water to t<br>e element Na<br>wahl".<br>uter knob "Me<br>e "Kompensat<br>0. Press the "<br>reading with<br>ne most conc<br>umber 6) and<br>permost scal<br>listilled water<br>candard soluti<br>dards 4, 5, 6.<br>7 for solutions | curve, find c<br>om which ca<br>in above for s<br>n up for 5-10<br>the instrument<br>by turning th<br>essbereich" in<br>on I" knob sli<br>Kompensation<br>"Kompensation<br>(Kompensation<br>adjust reado<br>e) using inne<br>– the instrum<br>ions no. 1, 2, 3<br>Record the reas<br>of potassiun | out the volume of the<br>alculate the amour<br>standard solution of<br>odium.<br>minutes.<br>nt.<br>e selector<br>nto position "10<br>ghtly out and adjust<br>on I" knob back.<br>ion II" if necessary.<br>ndard solution<br>put to approximatel<br>r "Messbereich" knot<br>nent should read 0.<br>3, test solution, and<br>esults. | it of Na (58.5 g of Na(<br>f potassium and follo<br>t<br>t                 |
| 7       | Model D                      | Diagram                |                                                                                                                                                                                                                                                                                                                                           | Flame                                                                                                                                                                                                                                                                                                                                      | File<br>Lens<br>Oxid<br>Fuel gas<br>To drain                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                     | r<br>Amplifier<br>and<br>Readout                                           |
|         | Observa<br>Look-up<br>Output | tion Table,<br>Table,  | Volume<br>of sodium<br>chloride<br>solution<br>(cm <sup>3</sup> )                                                                                                                                                                                                                                                                         | Concentrati<br>on of Na =<br>500 x vol<br>50<br>(ppm)                                                                                                                                                                                                                                                                                      | Emission<br>Intensity                                                                                                                                                                                                                                                                             | Volume of<br>potassium<br>chloride solution<br>(cm <sup>3</sup> )                                                                                                                                                                                                                                                                   | Concentr Emission<br>ation of K Intensity<br>= 500 x<br>vol<br>50<br>(ppm) |

| 1       |                          | KIT<br>Code: BS-SKIT.Ph                                                  |                                                                                                                                                                                                                                 | aching Proce                | 255                                             | Rev No.: 1.0<br>Date: 04-08-20 |    |  |  |
|---------|--------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------|--------------------------------|----|--|--|
| (       | 💜 Т                      | itle: Engineerin                                                         | g Chemistry I                                                                                                                                                                                                                   | _ab                         |                                                 | Page: 21 / 36                  | 19 |  |  |
| Copyric | ght ©2017. cAAS. All rig | hts reserved.                                                            |                                                                                                                                                                                                                                 |                             |                                                 |                                |    |  |  |
|         |                          | 2.0                                                                      | 20                                                                                                                                                                                                                              |                             | 2.0                                             | 20                             |    |  |  |
|         |                          | 4.0                                                                      | 40                                                                                                                                                                                                                              |                             | 4.0                                             | 40                             |    |  |  |
|         |                          | 6.0                                                                      | 60                                                                                                                                                                                                                              |                             | 6.0                                             | 60                             |    |  |  |
|         |                          | 8.0                                                                      | 80                                                                                                                                                                                                                              |                             | 8.0                                             | 80                             |    |  |  |
|         |                          | 10.0                                                                     | 100                                                                                                                                                                                                                             |                             | 10.0                                            | 100                            |    |  |  |
|         |                          | Test                                                                     |                                                                                                                                                                                                                                 |                             | Test solution                                   |                                |    |  |  |
|         |                          | solution                                                                 |                                                                                                                                                                                                                                 |                             |                                                 |                                |    |  |  |
|         | Sample<br>Calculations   | DETERMINA                                                                | ATION OF SOI                                                                                                                                                                                                                    | DIUM:                       |                                                 |                                |    |  |  |
|         | Calculations             | 1ml of NaCl                                                              | Weight of Sodium per ml of the solution = 1 mg<br>1ml of NaCl solution contains 0.002542g of NaCl<br>58.5 g of NaCl contains 23 g of Na                                                                                         |                             |                                                 |                                |    |  |  |
|         |                          | 0.002542 g                                                               | 23<br>0.002542 g of NaCl contains = × 0.002542<br>58.5                                                                                                                                                                          |                             |                                                 |                                |    |  |  |
|         |                          | 1ml of NaCl<br>Therefore X<br>X ×0.0025<br>=<br>Therefore th<br>solution | = 1 mg<br>Therefore 1ml of NaCl solution contains 1 mg of Na<br>1ml of NaCl solution contains 0.002542g of NaCl<br>Therefore Xml of NaCl solution contains =<br>X × 0.002542g of NaCl =×0.002542g of NaCl<br>=                  |                             |                                                 |                                |    |  |  |
|         |                          |                                                                          | Therefore, Y g of NaCl contains                                                                                                                                                                                                 |                             |                                                 |                                |    |  |  |
|         |                          |                                                                          | 23<br>=×Y =g=mg                                                                                                                                                                                                                 |                             |                                                 |                                |    |  |  |
|         |                          | DETEDMINI                                                                | 58.5                                                                                                                                                                                                                            |                             |                                                 |                                |    |  |  |
|         |                          | Weight of p<br>1ml of Kcl so                                             | ETERMINATION OF POTASSIUM:<br>/eight of potassium per ml of the solution = 1 mg<br>ml of Kcl solution contains (0.001909g of KCl<br>4.5 g of KCl contains 39 g of K                                                             |                             |                                                 |                                |    |  |  |
|         |                          | 1ml of KCl s                                                             | 39<br>=×0.001909 =1 mg<br>74.5<br>Therefore , 1ml of KCl solution contains 1 mg of K<br>1ml of KCl solution contains 0.001909g of KCl<br>Therefore, X ml of KCl solution contains = X × 0.001909g of KCl<br>=× 0.001909g of KCl |                             |                                                 |                                |    |  |  |
|         |                          | calculated k                                                             | by knowing th                                                                                                                                                                                                                   | of K preser<br>e equivalent | nt in above test so<br>weight of K and mo<br>39 | olution (X ml) can             |    |  |  |
|         |                          | i neretore, Y                                                            | g of KCl cont                                                                                                                                                                                                                   | lai(15 =                    | -× Y =g<br>74.5                                 |                                |    |  |  |
|         | 0                        |                                                                          |                                                                                                                                                                                                                                 |                             | =mg                                             |                                |    |  |  |
| 10      | Graphs                   | Calibratic                                                               | n curve                                                                                                                                                                                                                         |                             |                                                 |                                |    |  |  |

|                                                      | SKIT                                          |                                                                                                                 | Teaching Process                                    | Rev No.: 1.0       |  |  |  |
|------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------|--|--|--|
| - A                                                  | Doc Code:                                     | BS-SKIT.Ph5b1                                                                                                   |                                                     | Date: 04-08-2019   |  |  |  |
|                                                      |                                               |                                                                                                                 |                                                     |                    |  |  |  |
| Copyri                                               | Title:<br>ght ©2017. cAAS. All rights reserve | Engineering C                                                                                                   | nemistry Lab                                        | Page: 22 / 36      |  |  |  |
|                                                      | ght ©2017. cAAS. All rights reserve           | e<br>Emission<br>Intensity                                                                                      | Emission<br>Intensity<br>Conc. of Na (ppm)          | A Conc. of K (ppm) |  |  |  |
| 11                                                   | Results & Analysis                            |                                                                                                                 |                                                     | 1.12               |  |  |  |
|                                                      |                                               | Result: The weight                                                                                              | ght of Na <sup>+</sup> present in the given test sc | olution =mg        |  |  |  |
| The weight of K+ present in the given test solution= |                                               |                                                                                                                 |                                                     |                    |  |  |  |
| 12                                                   | Application Areas                             | This method is used in determining in ion concentration in BIOLOGICAL FLUID in medical electronics engineering. |                                                     |                    |  |  |  |
| 13                                                   | Remarks                                       |                                                                                                                 |                                                     |                    |  |  |  |
|                                                      | Faculty Signature<br>with Date                |                                                                                                                 |                                                     |                    |  |  |  |

# <u> PART - B</u>

# Experiment 01 : Determination of Total hardness of Hard Water sample by using Standard Na2EDTA solution.

| - | Experiment No.:                     | 1                                                                   | Marks                                                                                            |                                                                                | Date<br>Planned                                          |                                                                | Date<br>Conducted                                                                                                         |                                                              |  |
|---|-------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--|
| 1 | Title                               | Deterr                                                              | Determination of Total hardness of Hard Water sample.                                            |                                                                                |                                                          |                                                                |                                                                                                                           |                                                              |  |
| 2 | Course Outcomes                     |                                                                     | stimation of total hardness of given sample of hard water sample using complexometric titration. |                                                                                |                                                          |                                                                |                                                                                                                           |                                                              |  |
| 3 | Aim                                 |                                                                     | mination of<br>DTA solutior                                                                      |                                                                                | ness of Hard                                             | l Water sar                                                    | nple by usir                                                                                                              | ng Standard                                                  |  |
| 4 | Material /<br>Equipment<br>Required | 2.<br>3.<br>4.<br>5.<br><b>Reage</b><br>1.<br>2.<br><b>3.</b><br>4. | Pipette<br>Conical fla<br>F annel<br>ents<br>Na2EDTA<br>Ammonia<br>Hard wate                     | ask<br>Solution<br>solutions<br><b>er Solution</b><br><b>Cl Buffer sol</b>     | ution                                                    |                                                                |                                                                                                                           |                                                              |  |
| 5 | Principle                           | Hardn<br>salts in<br>of ca<br>sulpha<br>(EDTA                       | ess of wate<br>n it. Total ha<br>lcium and<br>ates etc., of<br>) is a reager                     | er is mainly o<br>Irdness is the<br>Magnesium<br>Calcium and<br>It, which read | sum of tem<br>) and perm<br>d Magnesium<br>cts with meta | porary hardr<br>anent hardı<br>n). Ethylene<br>ıl ions like Ca | calcium and<br>ness (due to k<br>ness (due to<br>diamine tetra<br>a <sup>2+</sup> &Mg <sup>2+</sup> form<br>ermine the co | oicarbonates<br>o chlorides,<br>a acetic acid<br>ing complex |  |

| 6       | Sector Sector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SKIT                 |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tead               | ching Pr                  | ocess                                                      |                              | ev No.: 1.0                     |  |  |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------|------------------------------------------------------------|------------------------------|---------------------------------|--|--|
|         | - (19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Doc Code<br>Title:   |                                                                                                                                                       | IT.Ph5b1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F03<br>hemistry La | ah                        |                                                            |                              | ate: 04-08-2019<br>age: 23 / 36 |  |  |
| Copyric | ght ©2017. cAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S. All rights reserv | /ed.                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                           |                                                            | F                            | aye. 237 30                     |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | of hardn                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sing substa        | ances.<br><b>CE-JCCOI</b> |                                                            | C                            | C-COD4                          |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                           |                                                            |                              |                                 |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | -                                                                                                                                                     | 4—1 <u>4</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ╤┓╔╋               |                           | ſ                                                          | 4−ŀł͡C−Œ                     |                                 |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                                                                                                                       | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | CF-CCO                    |                                                            | C                            | CE-ICODH                        |  |  |
| 6       | Procedu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>7</b>             | Eriochro<br>relatively<br>are wine-<br>wine-rec<br>metal io<br>be repre<br>M <sup>2+</sup> Indicator<br>Observe<br>is sensit<br>around 1<br>buffer is | The completion of the reaction (end point of the titration) is identified using<br>Eriochrome black- T indicator. This is an organic dye, blue in colour. It also forms<br>relatively less stable complexes with bivalent metal ion of Ca &Mg etc., which<br>are wine red in colour. Therefore addition of the indicator to hard water produces<br>wine-red Colour. When EDTA is added to hard water, it first reacts with free<br>metal ions and then attacks the metal-indicator complex .The latter reaction can<br>be represented as<br>$M^{2*}$ Indicator complex + EDTA $\rightarrow M^{2*}$ EDTA complex (COLOURLESS) +free<br>Indicator (Blue) so at the end point a change from wine red to blue colour is<br>Observed. Since the reaction involves the liberation of H* ions and the indicator<br>is sensitive to the concentration of H* lons (pH) of the solution a constant Ph of<br>around 10 has to be maintained. For this purpose ammonia-ammonium chloride<br>buffer is used.<br><b>Part-A: Preparation of standard EDTA solution</b> |                    |                           |                                                            |                              |                                 |  |  |
| 0       | <ul> <li>Procedure</li> <li>Part-A: Preparation of standard EDTA solution         <ul> <li>Weigh the weighing bottle containing disodium salt of Na, accurately and transfer the salt in to the funnel placed on a 250 cm<sup>3</sup> volur flask. Weigh the bottle again .The difference between the two weights will the amount of Na<sub>2</sub>EDTA transferred. Pour Small quantities of water over the on the funnel and transfer the salt in to the Flask. Wash the funnel with the water 3-4 times; Dissolve the salt by adding 5ml 1:1 Ammonia and make u solution to the mark and shake well for uniform</li> <li>Concentration</li> </ul> </li> <li>Part-B: Estimation of hardness of water         <ul> <li>Pipette out 25 cm<sup>3</sup> of the given sample of hard water in to a clean of flask .Add 5 ml of NH<sub>3</sub>-NH<sub>4</sub>Cl buffer followed by 3-4 drops of Eriochrome bindicator .Titrate this against Na<sub>2</sub>EDTA taken in a burette till the colour charform wine red to pure blue .Note down the burette reading and repeating the solution of the pure blue .Note down the burette reading and repeating the solution of the pure blue .Note down the burette reading and repeating the solution of the pure blue .Note down the burette reading and repeating the solution of the pure blue .Note down the burette reading and repeating the solution of the pure blue .Note down the burette reading and repeating the solution of the pure blue .Note down the burette reading and repeating the solution of the pure blue .Note down the burette reading and repeating the solution of the pure blue .Note down the burette reading and repeating the solution of the pure blue .Note down the burette reading and repeating the solution of the pure blue .Note down the burette reading and repeating the pure blue .Note down the burette reading and repeating the pure solution approximate and the pure solution to the pure solution the pure solution the pure solution the pure solutio</li></ul></li></ul> |                      |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                           | to a clean conical<br>iochrome black T<br>e colour changes |                              |                                 |  |  |
|         | Block,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Circuit              | - J                                                                                                                                                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | oncordant          |                           |                                                            |                              |                                 |  |  |
|         | Expected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                           | NIL                                                        |                              |                                 |  |  |
|         | Observal<br>Look-up<br>Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tion Table<br>Table  |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Trial I            | Tr                        | ial 2                                                      | Trial 3                      | Indicator and colour change     |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | Final<br>reading                                                                                                                                      | burette<br>)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                           |                                                            |                              |                                 |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Initial<br>Readin    | burette<br>g                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                           |                                                            | EBT indicator<br>Wine red to |                                 |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | Volume<br>EDTA<br>run de<br>cm <sup>3</sup>                                                                                                           | e of<br>own in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                           |                                                            |                              | clear blue                      |  |  |
|         | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      | OBSERV                                                                                                                                                | ATION A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    | ULATION                   | N:                                                         |                              |                                 |  |  |
|         | Calculati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ons                  |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tion of Na₂        |                           |                                                            |                              |                                 |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | Weight                                                                                                                                                | of the w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eighing bo         | ottle +Na                 | 2EDTA = W1=                                                |                              | g                               |  |  |

|        | SKIT                            |                                                     | Taaabir                                                                                                                                         |                                  |                  |                                           |  |  |  |  |
|--------|---------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------|-------------------------------------------|--|--|--|--|
| 1      | Doc Cod                         | de: BS-SKIT.Ph5b1.F03                               | Teachir                                                                                                                                         | ng Process                       | <b>)</b>         | Rev No.: 1.0<br>Date: 04-08-2019          |  |  |  |  |
|        | Title:                          | Engineering Chemis                                  | tryLab                                                                                                                                          |                                  |                  | Page: 24 / 36                             |  |  |  |  |
| Copyri | pht ©2017. cAAS. All rights res |                                                     | пу сар                                                                                                                                          |                                  |                  | i age: 247 30                             |  |  |  |  |
|        |                                 | Weight of t                                         | he weigl                                                                                                                                        | hing bottle                      | ⊖ = W₂=          | g                                         |  |  |  |  |
|        |                                 | Weight of the Na₂EDT                                | 2)= g                                                                                                                                           |                                  |                  |                                           |  |  |  |  |
|        |                                 | Molarity of EDTA                                    | Molarity of EDTA solution = $\frac{\text{Weight of Na}_2\text{EDT}(W_1-W_2)X4}{\text{Gram molecular wt. of Na}_2\text{EDTA}} = \frac{372}{372}$ |                                  |                  |                                           |  |  |  |  |
|        |                                 | PART-B : Estimatio                                  |                                                                                                                                                 |                                  | innoiceu         | = M ( <i>a</i> )                          |  |  |  |  |
|        |                                 | EDTA in burette                                     | Trial I                                                                                                                                         | Trial 2                          | Trial 3          | Indicator and colour change               |  |  |  |  |
|        |                                 | Final burette reading                               |                                                                                                                                                 |                                  |                  |                                           |  |  |  |  |
|        |                                 | Initial burette Reading                             |                                                                                                                                                 |                                  |                  | EBT indicator<br>— Wine red to clear blue |  |  |  |  |
|        |                                 | Volume of EDTA                                      |                                                                                                                                                 |                                  |                  |                                           |  |  |  |  |
|        |                                 | run down in cm <sup>3</sup>                         |                                                                                                                                                 |                                  |                  |                                           |  |  |  |  |
|        |                                 | Volume of Na₂EDTA us<br>1000cm³of 1M EDTA           |                                                                                                                                                 | n <sup>3</sup><br>.00 g of Ca    | aCO <sub>3</sub> |                                           |  |  |  |  |
|        |                                 | Therefore <i>b</i> cm³of <i>a</i> m                 | $b \text{ cm}^3 \text{ of } a \text{ molar EDTA} = \frac{bXaX100}{1000} = \dots (c) \text{ g of CaCO}_3$                                        |                                  |                  |                                           |  |  |  |  |
|        |                                 |                                                     | 25 cm <sup>3</sup> of hard water contains =(c) g of CaCO <sub>3</sub><br>Therefore $10^{6}$ cm <sup>3</sup> of hard water contains              |                                  |                  |                                           |  |  |  |  |
|        |                                 |                                                     | =                                                                                                                                               | $\frac{c \times 10^{\circ}}{25}$ | =                | ——— ppm                                   |  |  |  |  |
|        |                                 | Total hardness of Wat                               |                                                                                                                                                 | =pp                              | m of CaC         | O <sub>3</sub>                            |  |  |  |  |
|        | Outputs                         | Total hardness of Wate                              |                                                                                                                                                 | =ppr                             |                  |                                           |  |  |  |  |
|        | Results & Analysi               |                                                     |                                                                                                                                                 |                                  |                  |                                           |  |  |  |  |
| 12     | Application Areas               | <ul> <li>Complexomtri<br/>hardness of wa</li> </ul> |                                                                                                                                                 | on is an e                       | fficient m       | nethod for determining level of           |  |  |  |  |
| 13     | Remarks                         |                                                     | -                                                                                                                                               |                                  |                  |                                           |  |  |  |  |
|        | Faculty Signatu<br>with Date    | Ire                                                 |                                                                                                                                                 |                                  |                  |                                           |  |  |  |  |
|        |                                 |                                                     |                                                                                                                                                 |                                  |                  |                                           |  |  |  |  |

# Experiment 02 : DETERMINATION OF CALCIUM OXIDE IN CEMENT SOLUTION.

| - | Experiment No.: | 2    | Marks         |                 | Date<br>Planned | Date<br>Conducted       |      |       |
|---|-----------------|------|---------------|-----------------|-----------------|-------------------------|------|-------|
| - |                 | DET  |               |                 |                 |                         |      |       |
| 1 | Title           |      |               |                 |                 | MENT SOLUTION           |      |       |
| 2 | Course Outcomes | Calc | ulate % of Ca | ao in a given d | cement sample   | e using rapid EDTA metł | nod. |       |
| 3 | Aim             | DET  | ERMINATION    | N OF CALCI      | UM OXIDE IN     | I CEMENT SOLUTION       | BY   | USING |
|   |                 | STAI | NDARD Na2     | EDTA SOLUTI     | ON.             |                         |      |       |
| 4 | Material /      | App: | aratus        |                 |                 |                         |      |       |
|   | Equipment       | 6    | 6. Volumetr   | ric flask       |                 |                         |      |       |
|   | Required        | 7    | 7. Burette    |                 |                 |                         |      |       |
|   |                 | 8    | 3. Pipette    |                 |                 |                         |      |       |
|   |                 | 9    | 9. Conical fl | ask             |                 |                         |      |       |
|   |                 | 1    | .o. Fannel    |                 |                 |                         |      |       |
|   |                 | Reag | <u>gents</u>  |                 |                 |                         |      |       |
|   |                 |      | -             |                 |                 |                         |      |       |
|   |                 |      | 1. Concentr   | ated Hcl        |                 |                         |      |       |

| 1      | SKIT<br>Doc Code:                                                      | Teaching Process<br>BS-SKIT.Ph5b1.F03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rev No.: 1.0<br>Date: 04-08-2019                                                                                                                                                                                                |
|--------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (      | Title:                                                                 | Engineering Chemistry Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Page: 25 / 36                                                                                                                                                                                                                   |
| Copyri | ght ©2017. cAAS. All rights reserve                                    | <ul> <li>a. Na2EDTA Solution</li> <li>3. Cement solution</li> <li>4. Glycerol Solution</li> <li>5. Diethyl amine Solution</li> <li>6. 4N NaOH Solution</li> <li>7. Patton and Reeder's indicator</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                 |
| 5      | Principle                                                              | The major constituents of Portland cement are Silicat<br>aluminum and iron with a small quantity of oxides of<br>composition of Portland cement is as follows<br>CaCO <sub>3</sub> -63.80%; SiO <sub>2</sub> -20.7%; Al <sub>2</sub> O <sub>3</sub> -5.6%<br>MgO - 3.75%; TiO <sub>2</sub> -0.23% ; Na <sub>2</sub> O - 0.21%;<br>SO <sup>3+</sup> - 1.75%<br>Use of Eriochrome black-T as indicator gives the tota<br>Mg <sup>2+</sup> ions, While Patton & Reeder's indicator would<br>Calcium ions in the presence of Magnesium ions. Fo<br>has to be maintained. Additions of Diethylamine & So<br>purpose.                                                                                                    | <sup>2</sup> alkali metals The average<br>% ; Fe₂O₃ - 2.5%;<br>K₂O - 0.51 %;<br>al concentration of Ca²⁺and<br>d allow estimation of only<br>or this purpose P <sup>H</sup> of 12-14                                            |
| 6      | Procedure                                                              | <ul> <li>Part A: Preparation of solution of Disodium salt of N</li> <li>Weigh the given disodium salt of Na<sub>2</sub>EDTA and trans on a 250 cm<sup>3</sup> volumetric flask. Dissolve by adding s</li> <li>Make it up to the mark and shake well to get uniform</li> <li>Part B: Estimation of CaO</li> <li>Pipette out 25 cm<sup>3</sup> of given cement solution into a clest com<sup>3</sup> of diethyl amine and 5 cm<sup>3</sup> of 1:1 glycerol. Adjust adding 10 cm<sup>3</sup> of 4N sodium hydroxide solution.</li> <li>Reeder's indicator. Titrate the solution against ED burette until the colour changes from wine red to bly reading and repeat the titration to get concordant value.</li> </ul> | fer on to the funnel placed<br>small amount of DM water.<br>concentration.<br>ean conical flask using. Add<br>st the pH of the solution by<br>Add a pinch of Patton &<br>DTA solution taken in the<br>ue. Note down the burette |
|        | Block, Circuit<br>Model Diagram<br>Reaction Equation<br>Expected Graph | NIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 |
| 8      | Observation Table<br>Look-up Table<br>Output                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 Indicator and<br>colour<br>change<br>Patton and<br>Reeder's<br>indicator<br>Wine red to<br>clear blue                                                                                                                         |
| 9      | Sample<br>Calculations                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                               |
|        |                                                                        | Weight of the Na₂EDTAsalt transferred= g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ]                                                                                                                                                                                                                               |

|       | SKIT                                |                                                                                                                                                                                                                                                                                                                                     | Teaching                        | Process                  |               | Rev No.: 1.0                        |  |  |  |
|-------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------|---------------|-------------------------------------|--|--|--|
|       | Doc Code:                           | BS-SKIT.Ph5b1.                                                                                                                                                                                                                                                                                                                      |                                 |                          |               | Date: 04-08-2019                    |  |  |  |
| R     | Title:                              | Engineering Ch                                                                                                                                                                                                                                                                                                                      | nemistry Lab                    |                          |               | Page: 26 / 36                       |  |  |  |
| Соруп | ght ©2017. cAAS. All rights reserve | Molarity of Na₂E<br>Weight of Na                                                                                                                                                                                                                                                                                                    | a2EDTA salt 2<br>11ar weight of |                          |               | M (a)                               |  |  |  |
|       |                                     | EDTA in<br>burette                                                                                                                                                                                                                                                                                                                  | Trial I                         | Trial 2                  | Trial 3       | Indicator and colour change         |  |  |  |
|       |                                     | Final burette reading                                                                                                                                                                                                                                                                                                               |                                 |                          |               |                                     |  |  |  |
|       |                                     | Initial burette<br>reading                                                                                                                                                                                                                                                                                                          |                                 |                          |               | Patton and<br>Reeder's<br>indicator |  |  |  |
|       |                                     | Volume of<br>EDTA<br>run down in<br>cm <sup>3</sup>                                                                                                                                                                                                                                                                                 |                                 |                          |               | Wine red to<br>clear blue           |  |  |  |
|       |                                     | Weight of cement sample in 25 cm <sup>3</sup> = 0.09 = W g<br>Volume of EDTA required to react with 25.0 cm <sup>3</sup> of the cement solution =<br>1000 cm <sup>3</sup> of 1M EDTA = 56.08 g CaO (Molecular mass of CaO = 56.08)<br>b cm <sup>3</sup> of a M EDTA = $\frac{56.08 \times a \times b}{1000 \times 1}$ g of CaO<br>= |                                 |                          |               |                                     |  |  |  |
|       |                                     | $25.0 \text{ cm}^3 \text{ of ce}$                                                                                                                                                                                                                                                                                                   |                                 |                          | 'c 'g of CaO  |                                     |  |  |  |
|       |                                     | Percentage of (                                                                                                                                                                                                                                                                                                                     | CaO in the ceme                 | t sample = $\frac{c}{W}$ | × 100_=       |                                     |  |  |  |
|       |                                     |                                                                                                                                                                                                                                                                                                                                     |                                 | =                        |               |                                     |  |  |  |
|       | Outputs                             | Percentage of C                                                                                                                                                                                                                                                                                                                     |                                 |                          |               |                                     |  |  |  |
|       | Results & Analysis                  | REPORT: Percer                                                                                                                                                                                                                                                                                                                      | ntage of CaO in t               | he cement sa             | mple =        | · · · · · ·                         |  |  |  |
|       | Application Areas                   | This technique<br>engineering.                                                                                                                                                                                                                                                                                                      | is applicable                   | to determine             | the quality o | of cement in civil                  |  |  |  |
|       | Remarks                             |                                                                                                                                                                                                                                                                                                                                     |                                 |                          |               |                                     |  |  |  |
| 14    | Faculty Signature<br>with Date      | •                                                                                                                                                                                                                                                                                                                                   |                                 |                          |               |                                     |  |  |  |

# Experiment 03 : DETERMINATION OF PERCENTAGE OF COPPER IN BRASS

| - | Experiment No.: | 3 | Marks | Date | Date |  |
|---|-----------------|---|-------|------|------|--|

| State of the second sec | SKIT                                        | Teaching Process          | Rev No.: 1.0     |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------|------------------|--|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Doc Code:                                   | BS-SKIT.Ph5b1.F03         | Date: 04-08-2019 |  |  |  |  |  |
| ALCON DE L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Title:                                      | Engineering Chemistry Lab | Page: 27 / 36    |  |  |  |  |  |
| Copyright ©2017. cA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Copyright ©2017. CAAS. All rights reserved. |                           |                  |  |  |  |  |  |

| Copyri | ght ©2017. cAAS. All rights reserv           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|--------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 1      | Title                                        | Planned         Conducted           DETERMINATION OF PERCENTAGE OF COPPER IN BRASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|        | Course Outcomes                              | Estimation of percentage of Copper in a given alloy by iodometric method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| 3      | Aim                                          | DETERMINATION OF PERCENTAGE OF COPPER IN BRASS BY USING<br>STANDARD Na2S2O3 solution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|        | Material /<br>Equipment<br>Required          | Apparatus<br>1. Volumetric flask<br>2. Burette<br>3. Pipette<br>4. conical flask<br>5. F annel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|        |                                              | <ol> <li>Reagents</li> <li>Concentrated glacial acetic acid</li> <li>Standard sodium thiosulphate solution (0.025N)</li> <li>Potassium iodide</li> <li>NH4OH Solution</li> <li>Starch indicator</li> <li>Brass solution</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 5      | Principle                                    | The chief constituents of brass alloy are copper and zinc. It also contains small<br>quantities s tin, lead and iron. The percentage composition of typical brass is<br>copper 50-90, zinc: 20-40, Tin; 0.6, Lead; 0.2, Iron; 0.1<br>A solution of brass is made by dissolution of the sample in nitric acid. Boiling<br>with urea destroys oxides of nitrogen. Adding ammonia neutralizes excess acid.<br>The solution is changed to weak acidic medium by adding acetic acid.<br>Potassium iodide is added. Iodine is liberated by the cupric ions. Then the<br>solution is tittered against sodium thiosulphate solution using starch as indicator.<br>The amount of sodium thiosulphate consumed is the measure of the amount of<br>copper present                                                                                 |  |  |  |  |  |
| 6      | Procedure                                    | PART A: Preparation of Brass solution:<br>Weigh exactly the given sample of brass into a clean 250 cm <sup>3</sup> conical flask. Add<br>3cm <sup>3</sup> of 1:1 nitric acid and boil. Add 2 test tube of Dm water and about 1 g of urea.<br>Boil for about 2 minutes destroy oxides nitrogen. Cool the mixture.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|        |                                              | <b>PART –B: estimation of copper in brass solution.</b><br>Add 1 test tube of Demineralised water to the solution obtained in part A. Add<br>Ammonium hydroxide drop by drop until a pale blue precipitate is obtained.<br>Dissolve the precipitate by adding 5cm3 of acetic acid and 10cm <sup>3</sup> of 20% KI<br>solution.Titrate the librated iodine against standard sodium thiosulphate solution<br>taken in the burette until the solution becomes PALE YELLOW. Add about 2 cm <sup>3</sup><br>of freshly prepared starch solution as indicator. Continue the titration by adding<br>sodium thiosulphate solutionStrictly drop by drop until the dark blue coloration<br>disappears, leaving behind white ppt. Repeat PART A and Part B to conduct a<br>duplicate. Calculate the percentage of copper present in brass sample. |  |  |  |  |  |
|        | Reaction Equation                            | $2Cu^{2^{+}} + 4KI Cu_2I_2 + 4K^{+} + I_2$<br>$2Na_2S_2O_3 + I_2I + Na_2S_4O_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|        | Observation Table<br>Look-up Table<br>Output | Burette Sample-I Sample-II Sample-III Indicator and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |

| Sod. colour                                                                                                                                                                                                                                                      |                                         |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|--|--|--|--|
| Copyright ©2017. cAAS. All rights reserved.           Final         Starch           Initial         Disappeara           Volume         of           Sod.         colour                                                                                        |                                         |  |  |  |  |  |  |
| Final     Starch       Initial     Disappeara       Volume     of       Sod.     Colour                                                                                                                                                                          |                                         |  |  |  |  |  |  |
| Initialsolution.VolumeofSod.colour                                                                                                                                                                                                                               |                                         |  |  |  |  |  |  |
| Volume     of       Sod.     colour                                                                                                                                                                                                                              |                                         |  |  |  |  |  |  |
| Sod. colour                                                                                                                                                                                                                                                      | lue                                     |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                  |                                         |  |  |  |  |  |  |
| Thiosulphate                                                                                                                                                                                                                                                     |                                         |  |  |  |  |  |  |
| run down (in cm <sup>3</sup> )                                                                                                                                                                                                                                   |                                         |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                  |                                         |  |  |  |  |  |  |
| 9     Sample     OBSERVATION AND CALCULATION:       Calculations     SAMPLES     Sample-1     Sample-2     Sample-3                                                                                                                                              |                                         |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                  |                                         |  |  |  |  |  |  |
| Weight of the brass g<br>transferred g                                                                                                                                                                                                                           | g                                       |  |  |  |  |  |  |
| PART –B: Estimation of copper in brass solution.                                                                                                                                                                                                                 |                                         |  |  |  |  |  |  |
| Burette readings Sample-I Sample-II Indicator and concernance                                                                                                                                                                                                    | lour                                    |  |  |  |  |  |  |
| Final Starch solution.                                                                                                                                                                                                                                           |                                         |  |  |  |  |  |  |
| Initial Disappearance                                                                                                                                                                                                                                            | of                                      |  |  |  |  |  |  |
| Volume of Sod.                                                                                                                                                                                                                                                   |                                         |  |  |  |  |  |  |
| Thiosulphate run<br>down (in cm <sup>3</sup> )                                                                                                                                                                                                                   |                                         |  |  |  |  |  |  |
| SAMPLE 1:<br>Normality of Sodium. Thiosulphate =(a) N<br>Volume of the Sod. Thiosulphate =(b) cm <sup>3</sup><br>1000 cm <sup>3</sup> of sod. thiosulphate = $63.54$ g of copper<br>$\frac{63.54X \text{ bX } a}{1000} = \frac{63.54 \text{ X} \text{ X}}{1000}$ |                                         |  |  |  |  |  |  |
| $= \dots \dots$                                                                                                                                            |                                         |  |  |  |  |  |  |
| Therefore, 100g of brass contains = W<br>g of copper                                                                                                                                                                                                             | Therefore, 100g of brass contains = $W$ |  |  |  |  |  |  |
| (Note : Similarly do the calculation for II and III trial)                                                                                                                                                                                                       |                                         |  |  |  |  |  |  |
| 10     Outputs     Percentage of copper in brass sample =                                                                                                                                                                                                        |                                         |  |  |  |  |  |  |
| 11 Results & Analysis Percentage of copper in brass sample =                                                                                                                                                                                                     |                                         |  |  |  |  |  |  |
| <ul><li>12 Application Areas This method is used to determine composition of metals in an alloys.</li><li>13 Remarks</li></ul>                                                                                                                                   |                                         |  |  |  |  |  |  |
| 13     Remarks       14     Faculty     Signature       with Date                                                                                                                                                                                                |                                         |  |  |  |  |  |  |

#### Experiment 04 : DETERMINATION OF PERCENTAGE OF IRON IN HAEMATITE ORE SOLUTION

| - | Experiment No.: | 4    | Marks      | Date<br>Planned       |            | Date<br>Conducted |  |
|---|-----------------|------|------------|-----------------------|------------|-------------------|--|
| 1 | Title           | DETI | ERMINATION | I OF PERCENTAGE OF IR | ON IN HAEM | ATITE ORE         |  |

| 1       | SKIT                         |                                   | Teaching Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rev No.: 1.0                                                                                                                                                                                                                                                                                                         |
|---------|------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (       |                              | Doc Code:                         | BS-SKIT.Ph5b1.F03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date: 04-08-2019                                                                                                                                                                                                                                                                                                     |
| Copyrig | abt ©2017 cA                 | Title:<br>AS. All rights reserved | Engineering Chemistry Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Page: 29 / 36                                                                                                                                                                                                                                                                                                        |
|         | T                            |                                   | Calculate % of Fe in a given ore solution using exter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nal indicator method.                                                                                                                                                                                                                                                                                                |
| 3       | Aim                          |                                   | DETERMINATION OF PERCENTAGE OF IRON IN H.<br>BY USING STANDARD K2Cr2O7 SOLUTION.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AEMATITE ORE SOLUTION                                                                                                                                                                                                                                                                                                |
|         | Materia<br>Equipm<br>Require | ent<br>d                          | Apparatus         11. Volumetric flask         12. Burette         13. Pipette         14. Conical flask         15. Funnel         Reagents         1. Concentrated HCl         2. Haematite ore solution         3. SnCl2 Solution         4. HgCl2 Solution         5. Potassium dichromate         6. [K <sub>3</sub> (Fe(CN) <sub>6</sub> ](external)                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                      |
| 5       | Principl                     |                                   | Haematite is an important ore of iron containing mair<br>Estimation of involves the dissolution of the ore in I<br>the Ferric (Fe <sup>3+</sup> ) ions in the solution to Ferrous (Fe <sup>2+)</sup><br>ike Stannous chloride and the estimation of ferrous<br>against an Oxidizing agent like Potassium dichromation                                                                                                                                                                                                                                                                                                                                                          | Hydrochloric acid, reducing<br>ions using a reducing agent<br>ions so obtained by titrating                                                                                                                                                                                                                          |
| 6       | Procedu                      |                                   | <ul> <li>Part A - Preparation of Potassium Dichromate solut<br/>Weigh accurately the given potassium dichromate<br/>the funnel placed on a 250 cm<sup>3</sup> volumetric flask.<br/>quantities of DM water and make upto mark. S<br/>concentration.</li> <li>Part B Estimation of Iron:</li> <li>Pipette out 25 cm<sup>3</sup> of the given Haematite solution<br/>Add 5 cm<sup>3</sup> of concentrated Hydrochloric acid. H<br/>poiling. Add Stannous chloride drop by drop to f<br/>solution becomes Colureless. Add 2-3 drops of st<br/>Cool the solution to room temperature. Add 2 test tu</li> </ul>                                                                     | crystals and transfer on to<br>Dissolve by adding small<br>hake well to get uniform<br>in to a clean conical flask.<br>eat the solution nearly to<br>the HOT solution until the<br>annous chloride in excess.<br>be of DM water followed by                                                                          |
|         |                              |                                   | 5 cm <sup>3</sup> of Mercuric Chloride at a strech. A silky White<br>the contents of the flask and repeat The experie<br>GREYISH ppt is formed. Titrate the solution ac<br>dichromate solution taken in the burette using po<br>EXTERNAL INDICATOR. In the beginning take out a c<br>using a clean glass rod and mix it with a drop of t<br>paraffin paper. The colour of the drop of indicator of<br>drop of the reaction mixture after every addition of<br>fresh drop of the indicator, appearance of blue or<br>the END point is not reached. At the end point a d<br>fails to give either blue or green coloration. Note do<br>repeat the experiment for agreeing values. | ment if NO PRECIPATE or<br>gainst standard potassium<br>stassium ferricyanide as an<br>drop of the reaction mixture<br>he indicator arranged on a<br>changes to blue. Take out a<br>of K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> and mix it with a<br>green colour indicates that<br>rop of the reaction mixture |
| 7       | Reactio                      | n Equation                        | 2FeCl <sub>3</sub> + SnCl <sub>2</sub> → 2FeCl <sub>2</sub> + SnCl <sub>2</sub><br>Yellow Colorless                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                      |
|         |                              |                                   | SnCl₂ + 2HgCl₂ → SnCl₄ + Hg₂(<br>Silky                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cl <sub>2</sub><br>white                                                                                                                                                                                                                                                                                             |
|         |                              |                                   | $K_2Cr_2O_7 + 8 HCl \rightarrow 2KCl + 2 CrC$<br>$(2FeCl_2 + 2 HCl + [O] \rightarrow 2 FeC$<br>$K_2Cr_2O_7 + 14 HCl + 6FeCl_2 \rightarrow 2KCl$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $l_3 + H_2OX_3$                                                                                                                                                                                                                                                                                                      |

|        | AND DE LE COLORIZACIÓN DE LE COL | SKIT      | Te                                                                                        | eaching Pro             | ocess                 |                         | Re                                    | v No.: 1    | 0                 |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------|-------------------------|-----------------------|-------------------------|---------------------------------------|-------------|-------------------|
| (      | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | oc Code:  | BS-SKIT.Ph5b1.F03                                                                         |                         |                       |                         |                                       |             | 08-2019           |
| Copyri | ght ©2017. cAAS. A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Title:    | Engineering Chemistry                                                                     | Lab                     |                       |                         | Pa                                    | ge: 30 /    | / 36              |
| 8      | Observatic<br>Look-up<br>Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                           | Trail I                 | Trail II              | Trail III               | Indicator<br>change                   | and         | colour            |
|        | output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | Final burette reading                                                                     |                         |                       |                         | [K <sub>3</sub> (Fe(CN)               |             | ernal)            |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Initial burette reading                                                                   |                         |                       |                         | Ŭ                                     |             |                   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Volume of K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub><br>run down (in cm <sup>3</sup> ) |                         |                       |                         | Blue to nc<br>colour of i             | -           |                   |
| 9      | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | PART A: Preparation of                                                                    | ootassium               | dichrom               | ate solut               | ion                                   |             |                   |
|        | Calculatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | าร        | Weight of the weighing                                                                    | bottle + K <sub>2</sub> | $cr_{2}O_{7} =$       |                         | g                                     |             |                   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Weight of the weighing                                                                    | bottle                  | =                     |                         | g                                     |             |                   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Weight of the K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> sa                            | alt transfe             | rred =                |                         | g                                     |             |                   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Normality of K <sub>2</sub> Cr <sub>2</sub> C                                             | $P_7$ solution          | $h = \frac{Wt}{Cram}$ | of $K_2 Cr_2$           | $_{2}O_{7} X 4$<br>. of $K_{2}Cr_{2}$ | =           | $\frac{X}{49,06}$ |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Part B: Estimation of Iro                                                                 | n <sup>.</sup>          | Gran                  | i Eq. wi                | $\cdot 01 \text{ K}_2 \text{ Cr}_2$   | $_{2}O_{7}$ | 49.06             |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Burette readings                                                                          | Trail I                 | Trail II              | Trail III               | Indicator<br>change                   | and         | colour            |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Final burette reading                                                                     |                         |                       |                         |                                       |             |                   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Initial burette reading                                                                   |                         |                       |                         | [K <sub>3</sub> (Fe(CN)               |             |                   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Volume of K₂Cr₂O7<br>run down (in cm³)                                                    |                         |                       |                         | Blue to no colour of i                |             | -                 |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Volume of K2Cr2O7 consu<br>Weight of haematite ore<br>1000 cm3 of 1NK2Cr2O7               | dissolved<br>= 1 equ    |                       | iron                    | solution = 1.                         | 025 g       |                   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Therefore ( <b>b</b> )<br>55.85 X b X a = 5                                               | cm <sup>3</sup>         | of                    |                         | normal                                | K₂Cr₂       | O <sub>7</sub>    |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                           | 1000                    |                       |                         |                                       |             |                   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 25 cm³ of haematite ore<br>250 cm³ of haematite ore                                       |                         | contains (            |                         | n                                     | (d) g       | ) of iron         |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Therefore, 100g of hae                                                                    | matite ore              | e contain             | $\frac{\mathrm{d}x}{1}$ | $\frac{100}{025} = -$                 | X           | 100<br>25         |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Percentage of iron in giv                                                                 | on haoma                | tito oro or           | amplo -                 |                                       |             |                   |
| 10     | Outputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | Percentage of iron in giv                                                                 |                         |                       |                         |                                       |             |                   |
|        | Results & /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Analysis  | <b>REPORT</b> : Percentage of                                                             |                         |                       |                         |                                       |             |                   |
| 12     | Applicatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n Areas   | This method is used metallurgical process.                                                | to deterr               | nine cor              | nposition               | of metal                              | s in it     | s ore in          |
|        | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                                                                                           |                         |                       |                         |                                       |             |                   |
|        | Faculty<br>with Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Signature |                                                                                           |                         |                       |                         |                                       |             |                   |

| Sector Sector       | SKIT                    | Teaching Process          | Rev No.: 1.0     |
|---------------------|-------------------------|---------------------------|------------------|
|                     | Doc Code:               | BS-SKIT.Ph5b1.F03         | Date: 04-08-2019 |
| ALTER ALTER         | Title:                  | Engineering Chemistry Lab | Page: 31 / 36    |
| Copyright ©2017. cA | AS. All rights reserved |                           |                  |

### Experiment 05 : DETERMINATION OF CHEMICAL OXYGEN DEMAND (COD) OF WATER

| - | Experiment No.:                     | 5                                                 | Marks                                                                                                      |                                                                                                        | Date                                                                             |                                                                                   | Date                                                                           |                                                                                                                  |  |
|---|-------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|
|   |                                     |                                                   |                                                                                                            |                                                                                                        | Planned                                                                          |                                                                                   | Conducted                                                                      |                                                                                                                  |  |
|   | Title                               |                                                   |                                                                                                            |                                                                                                        |                                                                                  | DEMAND (CC                                                                        |                                                                                |                                                                                                                  |  |
| 2 | Course Outcomes                     |                                                   | stimation of total oxidizable impurities present in sewage water through redox ration.                     |                                                                                                        |                                                                                  |                                                                                   |                                                                                |                                                                                                                  |  |
| 3 | Aim                                 |                                                   | TERMINATION OF CHEMICAL OXYGEN DEMAND (COD) OF INDUSTRIAL AST WATER SAMPLE BY USING STANDARD FAS SOLUTION. |                                                                                                        |                                                                                  |                                                                                   |                                                                                |                                                                                                                  |  |
| 4 | Material /<br>Equipment<br>Required | 1<br>1<br>1<br>2<br><b>Reac</b>                   |                                                                                                            | ask<br>ated H2SO4<br>mmonium su<br>n dichromate<br>dicator                                             |                                                                                  |                                                                                   |                                                                                |                                                                                                                  |  |
| 5 | Principle                           | that of<br>impo<br>comp<br>other<br>comp<br>is ad | can be oxidiz<br>ortant parame<br>oounds, aror<br>r oxdisable n<br>oounds, acet                            | eed by a stror<br>eter in indust<br>natic hydroca<br>naterial are p<br>ic acid etc. a<br>atalyst. Addi | ng oxidizing a<br>rial wastewa<br>arbons, strai<br>present as in<br>re oxidisabe | agent. Chemi<br>ater treatmen<br>ght chain alc<br>apurities in w<br>more effectiv | cal oxygen c<br>t. Straight ch<br>ohol, acids,<br>astewater. S<br>/ely when si | ole materials<br>demand is an<br>hain aliphatic<br>pyridine and<br>straight chain<br>lver sulphate<br>help avoid |  |
| 6 | Procedure                           | Weig<br>using<br>wate<br>conc                     | nh accurately<br>g a funnel. Ac                                                                            | / the given F<br>dd 30cm³ of (<br>, make it (                                                          | FAS and trar<br>dilute sulphu                                                    | iric acid follo <sup>,</sup>                                                      | 250 cm <sup>3</sup> st<br>wed by abou                                          | solution:<br>tandard flask<br>ut 100 cm <sup>3</sup> of<br>for uniform                                           |  |

| 1      |                              | SKIT                 |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                         | ) Process                                                                                                                                                                           |                                                                                                                                                                               | Rev No.: 1.0                                                                                                                                                                                                                                          |  |  |
|--------|------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|        | - (39)                       | Doc Code<br>Title:   | 0                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                         |                                                                                                                                                                                     |                                                                                                                                                                               | Date: 04-08-2019                                                                                                                                                                                                                                      |  |  |
| Copyri | ght ©2017. cAA               | S. All rights reserv |                                                                                                                                                                                                                                                               | ·                                                                                                                                                                                                                       |                                                                                                                                                                                     |                                                                                                                                                                               | Page: 32 / 36                                                                                                                                                                                                                                         |  |  |
|        |                              |                      | Add 10 cm <sup>3</sup> of 1::<br>and 3 drops fer<br>colour changes<br>repeat the titration<br><b>Part-C: Back titr</b><br>Pipette out 25 c<br>cm <sup>3</sup> of standard<br>1:1 sulphuric acid<br>the flask constat<br>temperature. Act<br>taken in the bure | a sulphuric acid<br>roin indicator. T<br>from blue green<br>on to get conco<br>ration:<br>cm <sup>3</sup> of given sa<br>potassium dicl<br>d containing me<br>antly. Reflux the<br>dd 3-4 drops fe<br>ette until the co | containing me<br>Titrate against<br>in to reddish br<br>ordant values.<br>mple of waste<br>hromate soluti<br>ercuric sulphate<br>content of fl<br>erroin indicato<br>lour changes f | ercuric sulphate<br>FAS taken in th<br>own. Note the b<br>ewater into a co<br>on using a pipe<br>e and silver sulp<br>ask for 30 minu<br>r and Titrate ag<br>rom bluish green | Task-using pipette.<br>and silver sulphate<br>e burette until the<br>purette reading and<br>nical flask. Add 25<br>tte. Add 10 cm3 of<br>hate while shaking<br>utes. Cool to room<br>jainst FAS solution<br>n to reddish brown.<br>concordant values. |  |  |
|        |                              | n Equation           |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                         |                                                                                                                                                                                     |                                                                                                                                                                               |                                                                                                                                                                                                                                                       |  |  |
| 8      | Observa<br>Look-up<br>Output | tion Table<br>Table  |                                                                                                                                                                                                                                                               | Trail I                                                                                                                                                                                                                 | Trail II                                                                                                                                                                            | Trail III                                                                                                                                                                     | Indicator and colour change                                                                                                                                                                                                                           |  |  |
|        |                              |                      | Final burette reading                                                                                                                                                                                                                                         |                                                                                                                                                                                                                         |                                                                                                                                                                                     |                                                                                                                                                                               | Ferroin<br>— indicator                                                                                                                                                                                                                                |  |  |
|        |                              |                      | Initial burette reading                                                                                                                                                                                                                                       |                                                                                                                                                                                                                         |                                                                                                                                                                                     |                                                                                                                                                                               | Blue green to<br>— Reddish                                                                                                                                                                                                                            |  |  |
|        |                              |                      | Volume of<br>FAS run down<br>(in cm <sup>3</sup> )                                                                                                                                                                                                            |                                                                                                                                                                                                                         |                                                                                                                                                                                     |                                                                                                                                                                               | brown                                                                                                                                                                                                                                                 |  |  |
| 9      | Sample                       |                      | OBSERVATION A                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                         |                                                                                                                                                                                     |                                                                                                                                                                               |                                                                                                                                                                                                                                                       |  |  |
|        | Calculat                     | ions                 |                                                                                                                                                                                                                                                               | RT A: Preparation of Ferrous ammonium sulphate (FAS) solution:<br>eight of the weighing bottle + FAS = g                                                                                                                |                                                                                                                                                                                     |                                                                                                                                                                               |                                                                                                                                                                                                                                                       |  |  |
|        |                              |                      |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                         |                                                                                                                                                                                     | g                                                                                                                                                                             |                                                                                                                                                                                                                                                       |  |  |
|        |                              |                      | Weight of the w                                                                                                                                                                                                                                               |                                                                                                                                                                                                                         | =                                                                                                                                                                                   | g                                                                                                                                                                             |                                                                                                                                                                                                                                                       |  |  |
|        |                              |                      | Weight of the F                                                                                                                                                                                                                                               | AS salt transferr                                                                                                                                                                                                       | 'ed =                                                                                                                                                                               | g                                                                                                                                                                             |                                                                                                                                                                                                                                                       |  |  |
|        |                              |                      | Volume of FAS of                                                                                                                                                                                                                                              | of FAS $=$ 392 consumed in th                                                                                                                                                                                           |                                                                                                                                                                                     | solu<br>N(a)<br>n = ( <b>b</b> ) cm <sup>3</sup>                                                                                                                              |                                                                                                                                                                                                                                                       |  |  |
|        |                              |                      | Part-B: Back titr<br>Burette                                                                                                                                                                                                                                  | ration:<br>Trail I                                                                                                                                                                                                      | Trail II                                                                                                                                                                            | Trail III                                                                                                                                                                     | Indicator and                                                                                                                                                                                                                                         |  |  |
|        |                              |                      | readings                                                                                                                                                                                                                                                      | naiti                                                                                                                                                                                                                   |                                                                                                                                                                                     |                                                                                                                                                                               | colour change                                                                                                                                                                                                                                         |  |  |
|        |                              |                      | Final burette<br>reading                                                                                                                                                                                                                                      |                                                                                                                                                                                                                         |                                                                                                                                                                                     |                                                                                                                                                                               | Ferroin<br>indicator                                                                                                                                                                                                                                  |  |  |
|        |                              |                      | Initial burette<br>reading                                                                                                                                                                                                                                    |                                                                                                                                                                                                                         |                                                                                                                                                                                     |                                                                                                                                                                               | Blue green to<br>Reddish                                                                                                                                                                                                                              |  |  |
|        |                              |                      | Volume of FAS<br>run down (in<br>cm <sup>3</sup> )                                                                                                                                                                                                            |                                                                                                                                                                                                                         |                                                                                                                                                                                     |                                                                                                                                                                               | brown                                                                                                                                                                                                                                                 |  |  |
|        |                              |                      | Back titrate valve<br>Amount of pota<br>sample = _ (b)                                                                                                                                                                                                        | ssium dichroma                                                                                                                                                                                                          | <b>:</b> ) cm³<br>ate (in terms o                                                                                                                                                   | f FAS) that has                                                                                                                                                               | reacted with water                                                                                                                                                                                                                                    |  |  |
|        |                              |                      | 1000 cm <sup>3</sup> of 1N F                                                                                                                                                                                                                                  | AS solution = 1                                                                                                                                                                                                         | equivalent of c                                                                                                                                                                     | xygen = 8 g of o                                                                                                                                                              | xygen.                                                                                                                                                                                                                                                |  |  |

| Doc Code: BS-SKIT.Ph5b1.F03 Date: 04-08     | 3-2019 |
|---------------------------------------------|--------|
| Title: Engineering Chemistry Lab Page: 33 / | 36     |
| Copyright ©2017. CAAS. All rights reserved. |        |

|    |                                | <b>b</b> - <b>c</b> cm <sup>3</sup> of ' <b>a'</b> N FAS solution = $\frac{(b-c) X a X 8}{1000} = \frac{1000}{1000} = \frac{1000}{1000}$ |
|----|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                | 25 cm³ of wastewater requires ( <b>d</b> ) g of oxygen                                                                                   |
|    |                                | <u>d x1000</u>                                                                                                                           |
|    |                                | Therefore, 1000 cm <sup>3</sup> of waste water requires = $25$ =                                                                         |
|    |                                | COD of the given sample of water =mg/dm³ of oxygen_                                                                                      |
| 10 | Outputs                        | COD of the given sample of water =mg/dm³ of oxygen                                                                                       |
| 11 | Results & Analysis             | <b>REPORT</b> : COD of the given sample of water =mg/dm <sup>3</sup> of oxygen                                                           |
| 12 | Application Areas              | This technique is used to maintain standard parameters in industrial waste                                                               |
|    |                                | water in environmental engineering.                                                                                                      |
| 13 | Remarks                        |                                                                                                                                          |
| 14 | Faculty Signature<br>with Date |                                                                                                                                          |

# Experiment 06 : Estimation of percentage of available chlorine in the given sample of bleaching powder

| - | Experiment No.:                     | 6                                      | Marks                                                                                                                    |                                                                        | Date<br>Planned                   |             | Date<br>Conducted |              |  |
|---|-------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------|-------------|-------------------|--------------|--|
| 1 | Title                               | Estim<br>powd                          | timation of percentage of available chlorine in the given sample of bleaching                                            |                                                                        |                                   |             |                   |              |  |
| 2 | Course Outcomes                     |                                        | timation of % of chlorine in a given bleaching powder sample by lodometric ethod.                                        |                                                                        |                                   |             |                   |              |  |
| 3 | Aim                                 |                                        |                                                                                                                          |                                                                        | vailable chlori<br>2S2O3 Solutio  |             | ven sample        | of bleaching |  |
| 4 | Material /<br>Equipment<br>Required | V<br>V.<br><b>Reage</b><br>V<br>V<br>V | Mortar ar<br>Volumetr<br>Burette<br>Filenmey<br>ents<br>(I. Concentr<br>(II. Standard<br>(III. Potassiu<br>K. Starch ind | ric flask<br>ver flask.<br>rated glacial a<br>sodium thios<br>m iodide | sulphate soluti                   | on (0.025N) |                   |              |  |
| 5 | Principle                           |                                        |                                                                                                                          |                                                                        | nly used as a e<br>educed with ti |             |                   |              |  |

| - 1    | SK                          | IT               |                                                                                                                                                                                                                                                                                                        | Teaching Proce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SS                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                         | Re                                                                                                                                                                                                        | ev No.: 1.0                                                                                                                                                                                                                                                                                                   |
|--------|-----------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Doc C                       |                  | BS-SKIT.Ph5b1.F                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                         |                                                                                                                                                                                                           | ate: 04-08-2019                                                                                                                                                                                                                                                                                               |
| Copyri | ght ©2017. cAAS. All rights |                  | Engineering Ch                                                                                                                                                                                                                                                                                         | emistry Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                         | Pa                                                                                                                                                                                                        | age: 34 / 36                                                                                                                                                                                                                                                                                                  |
|        |                             | r<br>C<br>C      | must<br>Chlorine will libe<br>or less. The ioc                                                                                                                                                                                                                                                         | er required, the amo<br>be<br>rate free iodine from<br>line liberated, which<br>ed with standard soc                                                                                                                                                                                                                                                                                                                                                                                                                       | potassiu<br>1 is equ                                                                                                                                                                                                                                     | found<br>m iodide s<br>ivalent to                                                                                                                                                                                                       | solution<br>the ar                                                                                                                                                                                        | out.<br>when its pH is 8<br>mount of active                                                                                                                                                                                                                                                                   |
| 6      | Procedure                   |                  | flask,<br>(This can<br>mortar ar<br>2. Place 5<br>potassiur<br>prepared<br>3. Titrate w<br>colour is<br>4. Add 1mL<br>5. Note dow<br>6. Take a vo<br>7. Add 5 ml<br>8. If blue co<br>until the f<br>9. Record th<br>10. If no blue<br>colour ap<br>11. Then, titr<br>colour di<br>added (A<br>solution | 1g bleaching powde<br>and<br>be done by first mal<br>nd pestle.)<br>mL acetic acid in<br>m iodide crystals. Po<br>l above and mix with<br>ith 0.025 N sodium<br>obtained. (Deep yello<br>of starch solution and<br>on the volume of sodium<br>of distilled wate<br>acetic acid, 1g potas<br>plour occurs, titrate w<br>olue colour disappea<br>ne volume of sodium<br>e colour occurs, titrate<br>pears. Note down the<br>rate with 0.025 N so<br>sappears. Record the<br>A <sub>3</sub> ). Note down the of<br>and sodium | stopper<br>king a par<br>an Erler<br>bur 25 n<br>a stirring<br>thiosulp<br>bw chang<br>d titrate of<br>ium thiosulp<br>with 0.02<br>rs.<br>thiosulp<br>a volume<br>odium the<br>odium the<br>odium the<br>odium the<br>odium the<br>solume<br>difference | aste of the<br>nmeyer fla<br>nL of blea<br>nod.<br>hate solut<br>ges to pale<br>until the bl<br>sulphate s<br>ponding to<br>dide and 1<br>5 N sodiu<br>hate solut<br>.025 N iod<br>e of iodine<br>hiosulphat<br>e of sodiu<br>e betweet | the<br>bleach<br>ask and<br>aching<br>tion uni-<br>e yellow<br>lue colo<br>olution<br>o the sa<br>mL star<br>m thios<br>ion add<br>ine solut<br>(A <sub>2</sub> ).<br>e solut<br>m thios<br>n the v<br>as | container.<br>ing powder with<br>d add about 1g<br>powder solution<br>til a pale yellow<br>bur disappears.<br>added ( $V_1$ ).<br>imple used.<br>rch solution.<br>ulphate solution<br>ed ( $A_1$ ).<br>ution until a blue<br>ion till the blue<br>ulphate solution<br>olume of iodine<br>$A_4(A_4=A_2-A_3)$ . |
| 7      | Reaction Equat              | ion              | $A_{4}(A_{4}=A_{2}-A_{3}).$                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                         |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                               |
| 8      | Observation T               | Table,<br>Table, | Bleaching pow                                                                                                                                                                                                                                                                                          | der solution x Standa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                         |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                               |
|        |                             |                  | Trail no.                                                                                                                                                                                                                                                                                              | Volume of ble<br>Powder solution(mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                          | Burette re<br>Initial                                                                                                                                                                                                                   | Final                                                                                                                                                                                                     | Volume of tit<br>rant(mL)                                                                                                                                                                                                                                                                                     |
|        |                             |                  | Distilled water ×<br>Trail no.                                                                                                                                                                                                                                                                         | Standard sodium thi<br>Volume of ble<br>Powder solution(mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | eaching                                                                                                                                                                                                                                                  | te solution<br>Burette re<br>Initial                                                                                                                                                                                                    |                                                                                                                                                                                                           | N)<br>Volume of tit<br>rant(mL)                                                                                                                                                                                                                                                                               |

| - /     | SKIT                                                                 |                                                                     | Teaching Process                               | Re           | Rev No.: 1.0 |                 |  |  |
|---------|----------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------|--------------|--------------|-----------------|--|--|
|         | Doc Code:                                                            | BS-SKIT.Ph5b1.                                                      | Fo3                                            |              |              | ate: 04-08-2019 |  |  |
|         | Title:                                                               | Engineering Chemistry Lab Page: 35 /                                |                                                |              |              |                 |  |  |
| Copyric | ght ©2017. cAAS. All rights reserve                                  | a.                                                                  |                                                |              |              |                 |  |  |
|         |                                                                      |                                                                     |                                                |              |              |                 |  |  |
|         |                                                                      |                                                                     |                                                |              |              |                 |  |  |
|         |                                                                      | Distilled water >                                                   | <pre>     Standard iodine solution (0.0 </pre> | )<br>25N)    | 1            | <u> </u>        |  |  |
|         |                                                                      | Trail no.                                                           | Volume of bleaching                            |              | ading        | Volume of tit   |  |  |
|         |                                                                      |                                                                     | Powder solution(mL)                            | Initial      | Final        | rant(mL)        |  |  |
|         |                                                                      |                                                                     |                                                | million      | 1 mat        |                 |  |  |
|         |                                                                      |                                                                     |                                                |              |              |                 |  |  |
|         |                                                                      |                                                                     |                                                |              |              |                 |  |  |
|         |                                                                      |                                                                     |                                                |              |              |                 |  |  |
|         |                                                                      |                                                                     |                                                |              |              |                 |  |  |
|         |                                                                      |                                                                     |                                                |              |              |                 |  |  |
|         |                                                                      |                                                                     |                                                |              |              |                 |  |  |
|         |                                                                      |                                                                     |                                                |              |              |                 |  |  |
| 9       | Sample                                                               |                                                                     |                                                |              |              |                 |  |  |
|         | Calculations $(V - A_1) \text{ or } (V + A_4) \times N \times 35.46$ |                                                                     |                                                |              |              |                 |  |  |
|         |                                                                      | mg of Cl <sub>2</sub> /mL (B) =                                     |                                                |              |              |                 |  |  |
|         |                                                                      | mL of bleaching powder solution taken                               |                                                |              |              |                 |  |  |
|         |                                                                      | 1000 mL of bleaching powder solution contains 1000 x B mg of $Cl_2$ |                                                |              |              |                 |  |  |
|         |                                                                      | ie 1000 mable                                                       | aching powder contains 1000                    | B ma of C    | 1            |                 |  |  |
|         |                                                                      | 1.e., 1000 mg bie                                                   |                                                | b mg or c    | 2            |                 |  |  |
|         |                                                                      | therefore, 100 m                                                    | g of 1000 X                                    | В            |              |                 |  |  |
|         |                                                                      | bleaching powd                                                      | er contains =                                  |              |              |                 |  |  |
|         |                                                                      |                                                                     |                                                | 10           |              |                 |  |  |
|         |                                                                      |                                                                     |                                                | 10           |              |                 |  |  |
|         |                                                                      | % of chlorine                                                       | available =                                    |              |              |                 |  |  |
| 10      | Outputs                                                              | Available chlorin                                                   | e in the given bleaching pow                   | der is%      |              |                 |  |  |
|         | Results & Analysis                                                   |                                                                     | ne in the given bleaching pov                  |              |              |                 |  |  |
|         | Application Areas                                                    | This technique i                                                    | s used to determine the quali                  | ity of blead | ching po     | owder sample.   |  |  |
| -       | Remarks                                                              |                                                                     |                                                |              |              |                 |  |  |
|         | Faculty Signature<br>with Date                                       |                                                                     |                                                |              |              |                 |  |  |

|  |  | SKIT      | Teaching Process          | Rev No.: 1.0     |
|--|--|-----------|---------------------------|------------------|
|  |  | Doc Code: | BS-SKIT.Ph5b1.F03         | Date: 04-08-2019 |
|  |  | Title:    | Engineering Chemistry Lab | Page: 36 / 36    |

Copyright ©2017. cAAS. All rights reserved.